Excelling

NUMBER N40a........ Decimals Between 0 and 1 - Multiplying 119A
N40b........ Decimals Between 0 and 1 - Dividing 119B
N41.......... Further Fractions - Adding and Subtracting 120
N42a........ Further Fractions - Multiplying 121
N42b........ Further Fractions - Dividing 121
N43a........ Estimating Answers - Multiplication 122A
N43b Estimating Answers - Division 122B
N44.......... Using a Calculator 123
N45a........ Standard Form - Numbers Above 1 124A
N45b Standard Form - Numbers Between 0 and 1 124B
N46 Exact Representation of Roots 125
ALGEBRA A25 Trial and Improvement - Harder Questions 126A, 126B
A26a Further Simultaneous Equations - Introduction 127
A26b Further Simultaneous Equations - Solving 127
A26c Further Simultaneous Equations - Real-Life Contexts 127
A27a Regions - Basics 128
A27b Regions - Advanced 128
A28 Exponential and Reciprocal Graphs 129
RATIO R11a Compound Measures - Speed 130
R11b Compound Measures - Density 130
R12.......... Original-Value Problems 131
R13.......... Inverse Proportion 132
GEOMETRY G31 Congruent Triangles 133
G32 Cones 134
G33 Spheres 135
G34 Enlargement - Negative Scale Factor 136
G35a Trigonometry - Finding a Side 137A
G35b Trigonometry - Finding an Angle 137B
PROBABILITY P7............ Relative Frequency 138
STATISTICS S10a Averages from Tables - Mode, Median, Mean 139A
S10b Averages from Tables - Estimate for the Mean 139B

1) Work out the answers to the following:
a) $24 \times 0.24 .8$
b) $13 \times 0.4 \quad 5.2$
c) 60×0.742
d) $243 \times 0.248 .6$
e) 0.6×700420
2) Work out the answers to the following:
a) $314 \times 0.02 \quad 6.28$
b) $836 \times 0.0010 .836$
c) $800 \times 0.0064 .8$
d) $418 \times 0.0031 .254$
e) $411 \times 0.0936 .99$
3) Work out the answers to the following:
a) $0.2 \times 0.40 .08$
b) $0.1 \times 0.030 .003$
c) $0.02 \times 0.060 .0012$
d) $0.08 \times 0.0030 .00024$
e) $0.05 \times 0.080 .004$
4) Work out the answers to the following:
a) 62×0.14
8.68
b) 2.7×2.5
6.75
c) 613×0.042
25.746
d) 42.3×1.8
76.14
e) $228 \times 0.06314 .364$

Decimals Between 0 and 1
 N40b

1) Work out the answers to the following:
a) $6 \div 0.2$ 30
b) $8 \div 0.1 \quad 80$
c) $9 \div 0.3 \quad 30$
d) $4 \div 0.02 \quad 200$
e) $7 \div 0.002 \quad 3500$
2) Work out the answers to the following:
a) $62 \div 0.2$
310
b) $51 \div 0.3$ 170
c) $4.56 \div 0.04 \quad 114$
d) $22.5 \div 0.05 \quad 450$
e) $14.7 \div 0.007 \quad 2100$
3) Work out the answers to the following:
a) $7.24 \div 0.2 \quad 36.2$
b) $8.13 \div 0.3 \quad 27.1$
c) $1.512 \div 0.07 \quad 21.6$
d) $0.16 \div 0.008 \quad 20$
e) $0.0732 \div 0.04 \quad 1.83$
4) Work out the answers to the following:
a) $0.718 \div 0.2$3.59
b) $0.0141 \div 0.003$ 4.7
c) $0.24 \div 0.012 \quad 20$
d) $1.625 \div 0.0013 \quad 1250$
e) $47.1 \div 0.15 \quad 314$

Further Fractions
 N41 Adding and Subtracting

1)

a) $\frac{1}{3}+\frac{1}{2} \quad \frac{5}{6}$
3) Work out
a) $1 \frac{2}{3}+\frac{3}{4} \quad 2 \frac{5}{12}$
b) $\left.\frac{3}{5}+\frac{1}{4} \quad \frac{17}{20} \right\rvert\,$
c) $\left.\frac{2}{7}+\frac{3}{5} \quad \frac{31}{35} \right\rvert\,$
d) $\left.\frac{1}{2}+\frac{2}{9} \quad \frac{13}{18} \right\rvert\,$
e) $\left.\frac{3}{10}+\frac{3}{7} \quad \frac{51}{70} \right\rvert\,$
2) Work out
a) $\frac{2}{3}+\frac{1}{6} \quad \frac{5}{6}$
b) $\frac{3}{5}+\frac{3}{10} \quad \frac{9}{10}$
c) $\left.\frac{1}{2}+\frac{4}{5} \quad 1 \frac{3}{10} \right\rvert\,$
d) $\left.\frac{5}{6}+\frac{3}{5} \quad 1 \frac{13}{30} \right\rvert\,$
e) $\left.\frac{7}{12}+\frac{3}{4} \quad 1 \frac{1}{3} \right\rvert\,$
4) Work out
a) $2 \frac{1}{2}+1 \frac{1}{5} 3 \frac{7}{10}$
b) $1 \frac{3}{4}+1 \frac{2}{3} 3 \frac{5}{12}$
C) $3 \frac{1}{6}+1 \frac{1}{3} 4 \frac{1}{2}$
d) $2 \frac{2}{9}+1 \frac{2}{3} 3 \frac{8}{9}$
e) $4 \frac{1}{2}+2 \frac{3}{10} 6 \frac{4}{5}$
5) Work out
a) $\frac{2}{3}-\frac{1}{2} \quad \frac{1}{6}$
b) $\frac{3}{4}-\frac{2}{3} \quad \frac{1}{12}$
C) $\frac{4}{5}-\frac{3}{4} \quad \frac{1}{20}$
d) $\frac{5}{6}-\frac{2}{3} \quad \frac{1}{6}$ |
e) $\frac{3}{4}-\frac{3}{8} \quad \frac{3}{8}$
6) Work out
a) $1 \frac{3}{4}-\frac{1}{2} \quad 1 \frac{1}{4}$
b) $2 \frac{4}{5}-\frac{3}{4} \quad 2 \frac{1}{20}$
c) $3 \frac{1}{6}-\frac{2}{3} \quad 2 \frac{1}{2}$
d) $2 \frac{2}{9}-\frac{5}{6} \quad 1 \frac{7}{18}$ |
e) $6 \frac{1}{2}-\frac{7}{8} \quad 5 \frac{5}{8}$
7) Work out
a) $4 \frac{1}{2}-2 \frac{1}{2} \quad 2$
b) $1 \frac{2}{5}-1 \frac{1}{10} \quad \frac{3}{10}$
c) $3 \frac{2}{3}-1 \frac{11}{15} \quad 1 \frac{14}{15}$
d) $2 \frac{3}{4}-1 \frac{5}{8} \quad 1 \frac{1}{8}$
e) $5 \frac{2}{3}-1 \frac{4}{9} 4 \frac{2}{9}$
8) Work out
a) $3 \frac{4}{5}+1 \frac{1}{2} \quad 5 \frac{3}{10}$
b) $4 \frac{2}{9}-\frac{5}{6} \quad 3 \frac{7}{18}$
C) $2 \frac{3}{8}+1 \frac{5}{6} \quad 4 \frac{5}{24}$
d) $2-1 \frac{5}{8} \quad \frac{3}{8}$
e) $5-2 \frac{1}{7} \quad 2 \frac{6}{7}$
9) Find the perimeter of the rectangle below.

Give your answer as a mixed number.

10) Find the perimeter of the triangle below.

Give your answer as a mixed number.
$3 \frac{3}{4} \mathrm{~cm}$

11) If a length of copper tubing is $20 \frac{1}{4} \mathrm{~cm}$ long and Jim cuts off a piece that is $17 \frac{3}{5} \mathrm{~cm}$ long, what is the length of the copper tubing left over? $2 \frac{13}{20} \mathrm{~cm}$

Further Fractions
 N42a/b Multiplying and Dividing Answers

1)

a) $\left.\frac{1}{2} \times \frac{3}{4} \quad \frac{3}{8} \right\rvert\,$
b) $\frac{2}{3} \times \frac{4}{5} \quad \frac{8}{15}$
c) $\left.\frac{10}{11} \times \frac{2}{3} \quad \frac{20}{33} \right\rvert\,$
d) $\left.\frac{4}{9} \times \frac{2}{5} \quad \frac{8}{45} \right\rvert\,$
e) $\frac{4}{7} \times \frac{1}{9} \quad \frac{4}{63}$
2) Work out
a) $\frac{2}{3} \times \frac{3}{5} \quad \frac{2}{5}$
b) $\frac{3}{7} \times \frac{5}{6} \quad \frac{5}{14}$
c) $\frac{8}{9} \times \frac{6}{10} \quad \frac{8}{15}$
d) $\frac{1}{2} \times \frac{8}{9} \quad \frac{4}{9}$
e) $\left.\frac{7}{10} \times \frac{5}{21} \quad \frac{1}{6} \right\rvert\,$
3) Work out
a) $1 \frac{1}{2} \times \frac{8}{9} \quad 1 \frac{1}{3}$
b) $2 \frac{2}{3} \times \frac{6}{7} \quad 2 \frac{2}{7}$
C) $\frac{6}{11} \times 1 \frac{1}{8} \quad \frac{27}{44}$
d) $4 \frac{2}{5} \times \frac{10}{11} \quad 4$
e) $3 \frac{3}{4} \times \frac{8}{9} \quad 3 \frac{1}{3}$
4) Work out
a) $2 \frac{1}{2} \times 2 \frac{1}{5} 5 \frac{1}{2}$
b) $3 \frac{3}{4} \times 2 \frac{2}{3} \quad 10$
C) $4 \frac{1}{6} \times 2 \frac{2}{5} \quad 10$
d) $2 \frac{2}{9} \times 1 \frac{1}{5} 2 \frac{2}{3}$
e) $3 \frac{4}{7} \times 1 \frac{13}{15} 6 \frac{2}{3}$
5) Work out
a) $\frac{2}{3} \div \frac{1}{2} \quad 1 \frac{1}{3}$
b) $\frac{3}{4} \div \frac{2}{3} \quad 1 \frac{1}{8}$
C) $\frac{2}{5} \div \frac{3}{4} \quad \frac{8}{15}$ |
d) $\frac{3}{7} \div \frac{6}{11} \quad \frac{11}{14}$ |
e) $\frac{3}{4} \div \frac{3}{8} \quad 2$
6) Work out
a) $\frac{3}{4} \div 1 \frac{1}{5} \quad \frac{5}{8}$
b) $\frac{4}{7} \div 1 \frac{7}{9} \quad \frac{9}{28}$
c) $2 \frac{1}{4} \div \frac{6}{7} \quad 2 \frac{5}{8}$
d) $2 \frac{3}{5} \div \frac{9}{10} \quad 2 \frac{8}{9}$
e) $1 \frac{1}{2} \div \frac{3}{8} \quad 4$
7) Work out
a) $2 \frac{1}{2} \div 3 \frac{1}{2} \quad \frac{5}{7}$
b) $3 \frac{2}{5} \div 1 \frac{1}{10} \quad 3 \frac{1}{11}$
C) $4 \frac{1}{3} \div 1 \frac{11}{15} \quad 2 \frac{1}{2}$
d) $2 \frac{3}{4} \div 1 \frac{5}{8} \quad 1 \frac{9}{13}$
e) $5 \frac{2}{3} \div 1 \frac{4}{9} \quad 3 \frac{12}{13}$
8) Work out
a) $\frac{2}{3} \div 2 \quad \frac{1}{3}$
b) $1 \frac{3}{4} \div 14 \quad \frac{1}{8}$
C) $4 \div \frac{2}{5} \quad 10$
d) $5 \div \frac{3}{4} \quad 6 \frac{2}{3}$
e) $3 \frac{1}{2} \div 4 \quad \frac{7}{8}$
9) Find the area of the rectangle below.

Give your answer as a mixed number.
$2 \frac{3}{6} \mathrm{~cm}^{2} \mathrm{~cm} \quad 3 \frac{1}{3} \mathrm{~cm}$
10) Find the area of the triangle below.

Give your answer as a mixed number.
$1 \frac{7}{8} \mathrm{~cm}^{2}$

11) Jim has a length of copper tubing which is 85 cm long.

He wants to cut it into pieces which are $4 \frac{1}{4} \mathrm{~cm}$ long.
If there is no wastage, how many pieces will Jim get? 20

Estimating Answers Multiplication Answers

1) Estimate the value of:
a) $21 \times 34 \quad 600$
b) $42 \times 56 \quad 2400$
c) $17 \times 62 \quad 1200$
d) 29×782400
e) 66×967000
2) Estimate the value of:
a) $510 \times 724 \quad 350000$
b) $86 \times 2146 \quad 180000$
c) 753×184160000
d) 48×6315300000
e) 3642×13564000000

Estimating Answers Division Answers

1) Estimate the value of:
a) $\frac{61}{19} \quad 3$
b) $\frac{76}{43} \quad 2$
c) $\frac{362}{78} \quad 5$
d) $\frac{738}{96} \quad 7$
e) $\frac{416}{781} \quad 0.5$
2) Estimate the value of:
a) $\frac{357}{12 \times 23} \quad 2$
b) $\frac{924}{34 \times 13} \quad 3$
c) $\frac{172 \times 411}{430} \quad 200$
d) $\frac{625 \times 43}{16 \times 38} \quad 30$
e) $\frac{972 \times 368}{17 \times 23 \times 18} \quad 50$
3) Estimate the value of:
a) $8 \div 0.12 \quad 80$
b) $6 \div 0.24 \quad 30$
c) $5 \div 0.49 \quad 10$
d) $7 \div 0.012 \quad 700$
e) $23 \div 0.18 \quad 115$
4) Estimate the value of:
a) $\frac{24 \times 510}{0.53} \quad 20000$
b) $\frac{46 \times 6.2}{0.135} \quad 3000$
c) $\frac{215 \times 38}{0.183} \quad 40000$
d) $\frac{18.3 \times 31.2}{0.017} 30000$
e) $\frac{405 \times 274}{0.488} \quad 240000$

Using a Calculator

Answers

1) Using a calculator, work out the value of:
a) $24+16 \div 4 \quad 28$
b) $3+8 \div 2 \times 3 \quad 15$
c) $60 \times 2-20 \div 4 \quad 115$
d) $(2+7 \times 8) \times 4232$
e) $(3+7) \times(8-2) \quad 60$
2) Using a calculator, work out the value of:
a) $6^{3}-\left(2^{4}+3^{5}\right)$ -43
b) $\left(3^{7}-2^{6}\right) \div 10^{4}$ 0.2123
c) $2^{8} \div 2^{3} \times 5^{2}$ 800
d) $5^{3} \times 3^{5}$ 30375
e) $2^{20}-3^{8}$ 1042015
3) Using a calculator, work out the value of:
a) $\sqrt{256} \times 2^{4}-\sqrt{169} \quad 243$
b) $\sqrt{365} \times \sqrt{365} \quad 365$
c) $\sqrt{550-21} 23$
d) $\sqrt{2^{8}+3^{4}-13} \quad 18$
e) $\sqrt{4^{6} \times 2^{8}} \div\left(3^{2}-1\right) \quad 128$
4) Using a calculator, work out the value of:
a) $\frac{7+4 \times 8}{18-5} \quad 3$
d) $\frac{62 \times 2^{4}+2^{3}}{\sqrt{4^{3}+3^{2}+3^{3}}}$
100
b) $\frac{6^{3}-2^{3}}{\left(3^{2}+7\right) \div 2}$
26
e) $\frac{284-\sqrt{2^{9}-112}}{(3+17) \times \sqrt{100}}$
1.32
c) $\frac{\sqrt{729}+21}{\sqrt{64}}$
5) Write these numbers in standard form:
a) 400004×10^{4}
b) 2000002×10^{5}
c) 6006×10^{2}
d) 90000009×10^{6}
6) Write these numbers as digits and then in standard form:
a) twenty thousand 200002×10^{4}
b) eighty million 800000008×10^{7}
c) three hundred thousand 3000003×10^{5}
7) Write these as normal numbers:
a) $7 \times 10^{5} \quad 700000$
b) $6 \times 10^{9} \quad 6000000000$
c) $3 \times 10^{12} \quad 3000000000000$
d) $2 \times 10^{14} \quad 200000000000000$
8) Write these as normal numbers:
a) $2.4 \times 10^{5} \quad 240000$
b) $3.26 \times 10^{9} \quad 3260000000$
c) $4.01 \times 10^{12} \quad 4010000000000$
d) $7.115 \times 10^{13} \quad 71150000000000$
9) Write these numbers in standard form:
a) $45000 \quad 4.5 \times 10^{4}$
b) $6070000006.07 \times 10^{8}$
c) $83000000008.3 \times 10^{9}$
d) $910200 \quad 9.102 \times 10^{5}$
10) Write these as normal numbers:
a) $6 \times 10^{-4} \quad 0.0006$
b) $7 \times 10^{-8} \quad 0.00000007$
c) $3 \times 10^{-6} \quad 0.000003$
d) $9 \times 10^{-11} 0.00000000009$
11) Write these as normal numbers:
a) $2.6 \times 10^{-3} \quad 0.0026$
b) $3.4 \times 10^{-6} 0.0000034$
c) $5.23 \times 10^{-5} 0.0000523$
d) $9.806 \times 10^{-9} 0.000000009806$
12) Write these numbers in standard form:
a) 0.000066×10^{-5}
b) 0.0000077×10^{-6}
c) $0.000000033 \times 10^{-8}$
d) $0.0000000000044 \times 10^{-12}$
13) Write these numbers in standard form:
a) $0.000636 .3 \times 10^{-4}$
b) $0.006024 \quad 6.024 \times 10^{-3}$
c) $0.0000074 \quad 7.4 \times 10^{-6}$
d) $0.00000000099 \quad 9.9 \times 10^{-10}$

Exact Representation

N46

Answers

1) Give two consecutive integers that the answers to these questions lie between.
eg $\sqrt{7}$ is between 2 and 3
a) $\sqrt{15}$ is between $\underline{3}$ and $\underline{4}$
b) $\sqrt{23}$ is between 4 and $\underline{5}$
c) $\sqrt{79}$ is between 8 and 9
2) Which of these can be rewritten as an exact answer without the square root symbol? Where possible, write the answer.
a) $\sqrt{5}$
b) $\sqrt{25} 5$
c) $\sqrt{10}$
d) $\sqrt{18}$
e) $\sqrt{100} 10$
3) Find the decimal approximations for these, giving your answer to 1 decimal place:
a) $\sqrt{8} \quad 2.8$
b) $\sqrt{21} 4.6$
c) $\sqrt{13} 3.6$
d) $\sqrt{46} 6.8$
e) $\sqrt{65} 8.1$
f) $\sqrt{99} 9.9$
4) The equation $x^{2}+3 x=37$ has a solution between 4 and 5 .
Use a trial and improvement method to find this solution.
Give your answer to one decimal place.
You must show ALL your working.

$\left[\begin{array}{l\|l}x=4 & 4^{2}+3 \times 4=28 \\ x=5 & 5^{2}+3 \times 5=40\end{array}\right.$	Low	
$x=4.9$	$4.9^{2}+3 \times 4.9=38.71$	High
$\left[\begin{array}{ll}x=4.8 & 4.8^{2}+3 \times 4.8=37.44 \\ x=4.7 & 4.7^{2}+3 \times 4.7=36.19\end{array}\right.$	High	
$x=4.75$	$4.75^{2}+3 \times 4.75=36.8125$	Low
Low		

Therefore, $x=4.8$ to one decimal place.
2) The equation $x^{2}-4 x=6$ has a solution between 5 and 6 .
Use a trial and improvement method to find this solution. Give your answer to one decimal place.
You must show ALL your working.

$\left[\begin{array}{l}x=5 \\ x=6\end{array}\right.$	$5^{2}-4 \times 5=5$ $6^{2}-4 \times 6=12$	Low
$\left[\begin{array}{ll}x=5.1 & 5.1^{2}-4 \times 5.1=5.61 \\ x=5.2 & 5.2^{2}-4 \times 5.2=6.24\end{array}\right.$	High	
$x=5.15$	$5.15^{2}-4 \times 5.15=5.9225$	High

Therefore, $x=5.2$ to one decimal place.

1) The equation $x^{3}+3 x=114$ has a solution between 4 and 5 .
Use a trial and improvement method to find this solution.
Give your answer to one decimal place.
You must show ALL your working.

$\left[\begin{array}{ll}x=4 & 4^{3}+3 \times 4=76 \\ x=5 & 5^{3}+3 \times 5=140\end{array}\right.$	Low	
$\left[\begin{array}{l}x=4.6\end{array}\right.$	$4.6^{3}+3 \times 4.6=111.136$	High
$x=4.7$	$4.7^{3}+3 \times 4.7=117.923$	Low
$x=4.65$	$4.65^{3}+3 \times 4.65=114.494625$	High
High		

Therefore, $x=4.6$ to one decimal place.
2) The equation $x^{3}-2 x=9$
has a solution between 2 and 3 .
Use a trial and improvement method to find this solution.
Give your answer to one decimal place.
You must show ALL your working.

$\left[\begin{array}{ll}x=2 & 2^{3}-2 \times 2=4 \\ x=3 & 3^{3}-2 \times 3=21\end{array}\right.$	Low	
$x=2.1$	$2.1^{3}-2 \times 2.1=5.061$	
$x=2.2$	$2.2^{3}-2 \times 2.2=6.248$	High
$\left[\begin{array}{ll}x=2.3 & 2.3^{3}-2 \times 2.3=7.567 \\ x=2.4 & 2.4^{3}-2 \times 2.4=9.024 \\ x=2.35 & 2.35^{3}-2 \times 2.35=8.277875\end{array}\right.$	Low	
Low		
High		
Low		

Therefore, $x=2.4$ to one decimal place.

Further Simultaneous

A26a/b/c

Equations

Answers

1) Solve $3 x+y=11$ $x=2, y=5 \quad 4 x-y=3$
2) Solve $2 x-5 y=3$ $x=4, y=1 \quad 4 x+5 y=21$
3) Solve $x-2 y=3$ $x=2, y=-0.5 \quad 3 x+2 y=5$
4) Solve $x+3 y=10$ $x=4, y=2 \quad x+y=6$
5) Solve $3 x+2 y=3$
$x=-2, y=4.5 \quad 2 x+2 y=5$
6) Solve $5 x-3 y=23$
$x=4, y=-1 \quad 2 x-3 y=11$
7) Solve $3 x-2 y=6$ $x=4, y=3 \quad x+y=7$
8) Solve $6 x+y=10$
$x=2, y=-2 \quad 2 x-3 y=10$
9) Solve $2 x+7 y=11$ $x=2, y=1 \quad 3 x-2 y=4$
10) Solve $4 x+3 y=9$
$x=3, y=-1 \quad 5 x+2 y=13$
11) Solve $2 x+3 y=-7$ $x=-2, y=-1 \quad 7 x-2 y=-12$
12) Solve $3 x-2 y=5$ $x=\frac{1}{3}, y=-2 \quad 9 x+5 y=-7$
13) In the first week of opening, a zoo sold 200 adult tickets and 300 child tickets. The takings for that week were $£ 2600$.
In the second week, 500 adult tickets were sold and 400 child tickets were sold. The takings for the second week were $£ 5100$.
Form two equations and solve them to find the price of an adult ticket and the price of a child ticket. Adult ticket is $£ 7$

Child ticket is $£ 4$
14) If you multiply Sid's age by four and Tony's age by five and add the answers together it comes to 259 years.
However, if you multiply Sid's age by seven and then take away two times Tony's age the answer is 120 years.
Form two equations and solve them to find the ages of Sid and Tony. Sid is 26

Tony is 31
15) If nine rats and seven ferrets cost $£ 116.75$ and four rats and six ferrets cost $£ 88$, how much would five rats and four ferrets cost?
£66.25
16) If a mouse and a goldfish cost $£ 1.10$ and the mouse costs $£ 1$ more than the goldfish, how much does the goldfish cost? 5p

Regions

Answers

1) a) Shade the region represented by $x \leq-1$
b) Shade the region represented by $x>3$

2) a) Shade the region represented by $y<-1$
b) Shade the region represented by $y \geq 2$

3) Shade the region represented by $-3 \leq x<2$

4) Shade the region represented by $1 \leq y \leq 4$

5) Shade the region where $-1 \leq x \leq 3$ and $-4 \leq y \leq-2$

6) Shade the region where $-3<x<2$ and -1 $<y<4$

A28
 Exponential and Reciprocal Graphs Answers

1) A guitar was valued at $£ 2000$ on January 1st 1990 .

The value of the guitar is given by $V=2000 \times 1.03^{t}$ where $£ V$ is the value t years after 1st Jan 1990.
a) Sketch the graph of $V=2000 \times 1.03^{t}$ on the axes below, marking clearly where the graph crosses the y-axis.

b) Use your calculator to work out the value of the guitar on 1st January 1995. £2318.55
c) Use your calculator to work out the value of the guitar on 1st January 1987. £1830.28
2) Sketch the graph of $y=\frac{1}{x}$ on the axes below.

R11a/b

1) A car travels at 60 mph for 3 hours.

How far does the car travel? 180 miles
2) A cyclist cycles for 4 hours and covers a distance of 48 miles. What was her average speed in miles per hour? 12 mph
3) How long would it take a train which travels at an average speed of 80 mph to cover a distance of 400 miles? 5 hours
4) A runner runs at a speed of $12 \mathrm{~km} / \mathrm{h}$ for 3 hours and 15 minutes. How far does he run? 39 km
5) An aeroplane flies at an average speed of 510 mph .

How long would it take to fly a distance of 2720 miles? 5 hours and 20 minutes
6) If a worm travels a distance of 8.25 m in 2 hours and 45 minutes, work out his average speed in metres per hour. 3 metres per hour
7) $\quad 12.5 \mathrm{~cm}^{3}$ of mercury has a mass of 170 g . Work out the density of mercury. $\quad 13.6 \mathrm{~g} / \mathrm{cm}^{3}$
8) Platinum has a density of $21.4 \mathrm{~g} / \mathrm{cm}^{3}$.

What is the mass of $35 \mathrm{~cm}^{3}$ of platinum? 749 g
9) A quantity of ice had a mass of 62.56 g .

Knowing that ice has a density of $0.92 \mathrm{~g} / \mathrm{cm}^{3}$, work out how much ice there was, in $\mathrm{cm}^{3} .68 \mathrm{~cm}^{3}$
10) $15000 \mathrm{~cm}^{3}$ of nitrogen has a mass of 18.765 g . Work out the density of nitrogen in $\mathrm{g} / \mathrm{cm}^{3}$. $0.001251 \mathrm{~g} / \mathrm{cm}^{3}$
11) $15000 \mathrm{~cm}^{3}$ of gold has a mass of 289.5 kg . Work out the density of gold in $\mathbf{g} / \mathrm{cm}^{3}$. $19.3 \mathrm{~g} / \mathrm{cm}^{3}$

R12
 Original-Value Problems Answers

1) A shop has 25% off its prices in a sale.

Below are the sale prices of some items.
Find the original price of each item.
a) $£ 3.60 \quad £ 4.80$
b) $£ 4.80 \quad £ 6.40$
c) $£ 21.00 \quad £ 28.00$
d) $£ 15.30 \quad £ 20.40$
e) $£ 99.00 \quad £ 132.00$
f) $£ 12.90 \quad £ 17.20$
2) A shop has 20% off its prices in a sale.

Below are the sale prices of some items.
Find the original price of each item.
a) $£ 4.00 \quad £ 5.00$
b) $£ 4.80 \quad £ 6.00$
c) $£ 12.00 \quad £ 15.00$
d) $£ 16.40 \quad £ 20.50$
e) $£ 120.00 ~ £ 150.00$
f) $£ 192.00 ~ £ 240.00$
3) A shop has 15% off its prices in a sale.

Below are the sale prices of some items.
Find the original price of each item.
a) $£ 17.00 \quad £ 20.00$
b) $£ 51.00 \quad £ 60.00$
c) $£ 42.50 \quad £ 50.00$
d) $£ 84.15 \quad £ 99.00$
e) $£ 52.70 \quad £ 62.00$
f) $£ 83.30 \quad £ 98.00$

R13
 Inverse Proportion Answers

1) 3 people can paint a room in 2 hours.
a) How long would it take 1 person? 6 hours
b) How long would it take 2 people? 3 hours
c) How long would it take 6 people?
d) How long would it take 8 people?

45 minutes
2) 5 people can harvest all of the apples in an orchard in 12 hours.
a) How long would it take 1 person? 60 hours
b) How long would it take 12 people? 5 hours
c) How long would it take 2 people? 30 hours
d) How long would it take 9 people? 6 hours 40 minutes

G31
 Congruent Triangles
 Answers

1) Sort these six triangles into 3 congruent pairs.

2) Which of the following triangles are congruent to triangle T ?

A, and D are congruent to T

G32

Cones

1) Here is a cone.

Find:
a) the volume $301.6 \mathrm{~cm}^{3}$
b) the curved surface area $188.5 \mathrm{~cm}^{2}$
c) the total surface area $301.6 \mathrm{~cm}^{2}$
2) Here is a cone.

Find the total surface area. $\quad 267.1 \mathrm{~cm}^{2}$
3) A child's rocket is made from a cone and a cylinder.

Find the total volume of the toy rocket. $230.4 \mathrm{~cm}^{3}$

Spheres

Answers

1) Find
a) the volume of the sphere $904.9 \mathrm{~cm}^{3}$
b) the surface area of the sphere $452.4 \mathrm{~cm}^{2}$

2) Find the volume of
a) a sphere with radius $10 \mathrm{~cm} 4189.3 \mathrm{~cm}^{3}$
b) a sphere with diameter $16 \mathrm{~cm} \quad 2144.9 \mathrm{~cm}^{3}$
3) Find the surface area of
a) a sphere with radius $9 \mathrm{~cm} \quad 1018.0 \mathrm{~cm}^{2}$
b) a sphere with diameter $20 \mathrm{~cm} \quad 1256.8 \mathrm{~cm}^{2}$
4) Here is a hemisphere

Find
a) the volume of the hemisphere $261.8 \mathrm{~cm}^{3}$
b) the total surface area of the hemisphere $235.7 \mathrm{~cm}^{2}$

Enlargement
 G34 Negative Scale Factor
 Answers

1) Enlarge line $A B$ with scale factor -2 and point $(7,6)$ as the centre of enlargement.

2) Enlarge triangle $A B C$ with scale factor -2 and point $(7,6)$ as the centre of enlargement.

3) Enlarge line $A B$ with scale factor -3 and point $(3,4)$ as the centre of enlargement.

4) Enlarge triangle $A B C$ with scale factor -1.5 and point $(4,5)$ as the centre of enlargement.

Trigonometry
 G35a
 Finding a Side Answers

Find the lengths of the missing sides, giving your answers to 1 decimal place,

2)

3)

4)
8.2 cm

6)
5)

Trigonometry

G35b

Finding an Angle Answers

Find the sizes of the angles marked with letters, giving your answers to 1 decimal place,
1)

2)

6 cm
3)
7.2 cm

4)
4.1 cm

6)
5)
13.4 cm

Relative Frequency

Answers

1) Peter bought an unfair dice from a Joke Shop. He didn't know how the dice was biased and so he rolled it 100 times and noted down which numbers came up. He found that the number 6 occurred 8 times.
a) What is the relative frequency of getting a six? 0.08 or $\frac{8}{100}$
b) If Peter rolls the dice 400 times, estimate how many $6 s$ he will roll. 32
2) Mary had a bag containing four different colour marbles. She chose a marble, noted its colour and then replaced it, 80 times.

The results can be seen in this table.

Colour	No. of times chosen
Red	12
Blue	24
Green	18
Yellow	26

a) Estimate the probability that a blue marble will be chosen on the next pick. \qquad
b) If a marble is chosen and replaced 280 times, estimate how many times you would expect to choose a red marble. 42 times
3) Benford's law says that if you look at real-life sources of data (heights of mountains, populations of countries, etc) the number 1 will be the first digit with relative frequency 0.3 If you go through any newspaper and write down the first 20 numbers you come across, about how many of the numbers would you expect to begin with a ' 1 '. 6

Sally conducted a survey to see how many sandwiches each pupil brought to school in her class per day.
The results can be seen in the table.

No. of sandwiches	Frequency
0	1
1	5
2	6
3	12
4	2

a) What is the modal number of sandwiches brought to school? 3 sandwiches
b) What is the median number of sandwiches brought to school?

3 sandwiches
c) Work out the mean number of sandwiches brought to school.
2.3 sandwiches Give your answer to 1 decimal place.

S10b
 Averages from Tables Estimate for the Mean Answers

1) 50 hippos were captured over the course of a year and weighed. The results can be seen in the table, below.

Weight of hippo in tonnes	Frequency
$1.4 \leq w<1.7$	5
$1.7 \leq w<2.0$	9
$2.0 \leq w<2.3$	15
$2.3 \leq w<2.6$	12
$2.6 \leq w<2.9$	7
$2.9 \leq w<3.2$	2

Work out an estimate for the mean weight of a hippo. Give your answer to 1 decimal place. 2.2 tonnes
2) Jenny had a theory that if asked to guess the length of a line, children under the age of 10 would overestimate the length but adults would underestimate the length.

To help her decide if she was correct she asked 100 under-10s and 100 adults to guess the length of a 34 cm line.

The results can be seen in the two tables, below.

Children under the age of 10 estimates

Estimate of length in cm	Frequency
$20 \leq I<24$	4
$24 \leq I<28$	11
$28 \leq I<32$	24
$32 \leq I<36$	39
$36 \leq I<40$	22

Estimate for the mean length is 32.56 cm

Adult estimates

Estimate of length in cm	Frequency
$20 \leq I<24$	2
$24 \leq I<28$	6
$28 \leq I<32$	16
$32 \leq I<36$	62
$36 \leq I<40$	14

Estimate for the mean length is 33.2 cm

Use the results in the tables to see if Jenny was correct.
Show all your workings. The estimate for the mean for under-10s show that, on average, they underestimated the length by 1.44 cm . On average, the adults underestimated by 0.8 cm . Therefore, Jenny is not correct because both groups underestimated the length of the line.

