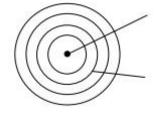
Applied Science Chemistry work to be submitted in the first lesson in September with Mr Boddaert

Hi all

This work needs to be completed and handed in the first lessons in September.


I handed out a paper copy of this document in the taster lessons and have spares, if you come into school and collect one from me.

Many thanks in advance and I look forward to teaching you next year.

	0 (8)	(18) 4.0 hetium	7	20.2	Pe	neon 10	39.9	Ar	18	83.8	۲ ۲	36 36	131.3	Xe	54 Sta	[222]	å	radon 86		pa									D
	7	Į	(11)	19.0	Ŀ	fluorine 9	35.5	chlorine Chlorine	17	79.9	Ъ	35 35	126.9	-	53 53	[210]	At	astatine 85		Elements with atomic numbers 112-116 have been reported here not fully surface to de-		175	Ξ	lutetium 71	[257]	5	lawrencium 103		DO NOT WRITE IN THIS AREA
	9		(01)	16.0	0	axygen 8	32.1	sultur	16	79.0	Se	34 34	127.6	Te	tellurium 52	[209]	8	polonium 84		-116 have I		173	ę	ytterbium 70	[254]	Ŷ	nobeltum 107		KH E IN
	2		(61)	14.0	z	nitrogen 7	31.0	P	15	74.9		33	121.8	å	antimony 51	209.0	B	bismuth 83		tomic numbers 112-116 hav	summer from	169	Ē	thultum 69	[256]	PW	mendelevium 101		I FIIS AP
	4		(4)	12.0	υ	carbon 6	28.1	Silicon		72.6	e	germantum 32	118.7	ŝ	£ 2	207.2	8	82		atomic nu		167	ង	erbium 68	[253]	Ē	fermium 100		Ē
	8	Ş	5	10.8	æ	5 5	27.0	Al	13	69.7	Ga	31 31	114.8		49 49	204.4	F	thallium 81		nents with		165		67	[254]	ß	cirsteinum 99		
ients									(12)	65.4	z	M K	112.4	3	cadmium 48	200.6	분	80 80		Eler		163	5	dysprasium 66	[251]	້ວ	californium 9.8	2	¢
Elem									(11)	63.5	J	29 29	107.9	Ag		197.0	٩n	6/ 6/	[272]	Ds Rg	111	159		65	[245]	뙾	berkelium 97		DO NOT WRITE IN THIS AREA
le of									(01)	58.7	ż	nickel 28	106.4	Р	pailadium 46	195.1	۲	platinum 78	[271]	õ	110	157	B	gadolinium 64	[247]	ຮູ	onium 96		A DIAM
c Tab			_						(6)	58.9	ა	27 27	102.9	뙨	45 th	192.2	느	tridium 77	[268]	Мţ	109	152	E	europrum 63	[243]		americium 95		a ciut s
riodi		1.0 hydrogen							(8)	55.8	ę	iron 26	101.1		ruthenium 44	190.2	õ	osmium 76	[277]	Hs	108	150	ES.	samarium 62	[242]	Ъ	plutorium 9.4		NEA
The Periodic Table of Elements									6	54.9	۳	manganese 25	[98]	ř	technetium 43	186.2	Re	75 75		Bh		[147]	Ē	promethium 61	[237]	£	neptunium 93		
F				mass	pol	umber]		(9)	52.0	Ե	chromium 24	95.9	Wo	molybdenum 42	183.8	≯	tungsten 74	[366]	Sg	106	144	PN	neodymium 60	238	∍	uranium 92		
			vey	relative atomic mass	atomic symbol	name atomic (proton) number			(2)	50.9	>	vanadium 23	92.9	₽	niobium 41	180.9	Ta	tantalum 73		Db		141	ካ	presectimum neodymum 59 60	[231]	Pa	protectimum 91		DO NO
				relati	ato	atomic			(4)	47.9	Ë	titanium 22	91.2	zr	zirconium 40	178.5	Ŧ	hafnium 72	[261]	Rf	104	140	e C	cerium 58	232	f	thorium 90		T ANNU L
									(3)	45.0	х	scandium 21	88.9	۲	yttrium 39	138.9	La*	Lanthanum 57	[227]	Act	89		8						DO NOT WRITE IN THIS AREA
	2	ć	(7)	0.0	Be	beryllium 4	24.3	Mg	12	40.1	_	calcium 20	87.6	۲	strantium 38	137.3	Ba	56	[326]	Ra	88		 Lanthanide series 	 Actinide series 					MNEM
	-	ł.	6	6.9	5	a lithium 3	23.0	Ra Na		39.1	¥	potassium 19	85.5	å	rubidium 37	132.9	പ	caesium 55	[223]	Fr ferring	87		* Lant	 Actin 					

https://www.bbc.co.uk/bitesiz e/guides/z3sg2nb/revision/1

sub-atomic particle	relative mass	relative charge
proton		
neutron		
electron		5.

ATOMIC STRUCTURE

Atomic number = number of

Mass number = number of + number of

The number of protons, neutrons and electrons in an atom can be worked out using the atomic number and mass number.

Number of protons =
Number of neutrons =
Number of electrons =

Atoms can be represented as follows:

mass	number	Symbol		¹ %F
atomic	number	Symbol	e.g.	9Г

protons = neutrons = electrons =

Atoms of the same element have the same number of In fact, it is the number of that determines what type of atom it is (e.g. all atoms with 6 protons are carbon atoms). Atoms of different elements have different numbers of

Isotopes are atoms with	h the same number of	but a different
number of	This means they	are atoms of the same
wit	h the same	number but a different
number.		

	³⁵ 17Cl	³⁷ 17Cl
protons		
neutrons		
electrons		

Atom	Atomic number	Mass number	Number of protons	Number of neutrons	Number of electrons
²³ ₁₁ Na					
Li	3	7			
Ar		40	18		
K			19	20	
Al				14	13
²³⁵ 92U					
²³⁸ 92U					

Atoms are neutral because they contain the same number of positive protons as negative electrons. For example, the atom ²³₁₁Na is neutral because it contains 11 protons (11+ charges) and 11 electrons (11- charges).

IONS

lons are particles that contain a different number of protons and electrons. For example, an ion with 11 protons (11+ charges) and 10 electrons (10– charges) has an overall charge of 1+.

The noble gas elements (Group 0 elements) have very stable electron arrangements. Ions also have the electron structure of the noble gases (group 0 elements), except H^{*} which has no electrons at all.

1) Complete the table below to show whether particles are atoms or ions, and for ions their charge.

Number and overall charge of protons	11+	11+	16+	4+	13+	18+	17+	15+	21+	1+	32+	35+
Number and overall charge of electrons	11-	10-	18–	2-	10–	18-	18–	18–	18–	0-	32-	36-
Atom or ion?	atom	ion	ion	42. 				1			3 3	
Overall charge		1+	2-	22				3			3	

 Complete the table below to show the electronic structure of some common ions. The first one has been done for you. You will need to use the Periodic Table to help.

lon	CI	Li ⁺	F⁻	Mg ²⁺
Protons	17			
Electrons	18			
Electron structure				
Electron structure	2,8,8			

lon	ĸ⁺	S ^{2−}	H⁺	P ³⁻
Protons				
Electrons				
Electron structure				
Electron structure				

Ionic bonding

- 1. Watch each of these short videos on ionic bonding:
 - Formation of ions. <u>https://youtu.be/900dXBWgx3Y</u>
 - Ionic bonding <u>https://youtu.be/zpaHPXVR8WU</u>
 - Giant ionic compounds and their melting and boiling points <u>https://youtu.be/PNKsbnH1vw8</u> properties of ionic compounds. <u>https://youtu.be/TxHi5FtMYKk</u>
- 2. Make key notes on the following using KS4 Bitesize <u>https://www.bbc.co.uk/bitesize/guides/z6k6pbk/revision/1</u>

What an ionic bond is

Example of how a metal and non-metal bond ionically

Properties of ionic compounds, with an explanation of each.

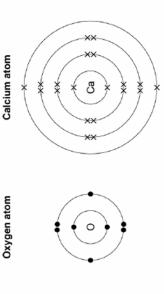
3. Answer the following exam questions on ionic bonding and use the mark scheme attached to the online resources to mark them.

ð.

This question is about calcium.

lonic compounds, such as calcium oxide, have high melting points. (q)

Complete the sentences. Use words from the box.


layers ions forces bonds

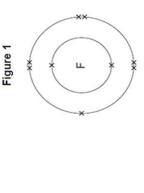
Calcium oxide has a giant ionic lattice in which there are strong electrostatic

of attraction in all directions.

Ē

The figure below shows the electronic structure of an oxygen atom and a calcium atom. <u></u>

Describe how the calcium atom and the oxygen atom forms calcium oxide.


You should give the charge on each ion formed.

(a)

Figure 1 shows the arrangement of electrons in a fluorine atom.

This question is about fluorine.

g

In which group of the periodic table is fluorine? () Group_

Ē

Complete the table below to show the particles in an atom and their relative masses. (ii)

Relative mass		1	Very small
Name of particle	Proton	Neutron	

Use the correct answer from the box to complete the sentence. (111)

isotopes	ers of neutrons are
alloys	h different numbers
alkalis	Atoms of fluorine with

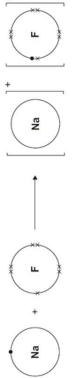
called

- Sodium reacts with fluorine to produce sodium fluoride. (q)
- Complete the word equation for this reaction. ()

sodium

(4 (Total 6 marks)

Ē


(F)

5

The dots (•) and crosses (×) represent electrons.

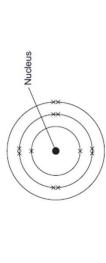
Use Figure 2 to help you answer this question.

Describe, as fully as you can, what happens when sodium reacts with fluorine to produce sodium fluoride.

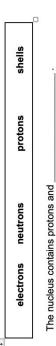
Sodium fluoride is an ionic substance. Σ What are two properties of ionic substances?

Tick (√) two boxes.

Dissolve in water


Gas at room temperature

High melting point


Low boiling point

This question is about magnesium. 8

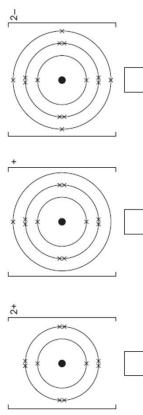
The electronic structure of a magnesium atom is shown below. 9 (a)

Use the correct answer from the box to complete each sentence. +

The particles with the smallest relative mass that move around the nucleus are called

Atoms of magnesium are neutral because they contain the same number of

electrons and


3

A magnesium atom reacts to produce a magnesium ion. (II)

Which diagram shows a magnesium ion?

Tick (V) one box.

4

Covalent bonding

- 1. Watch each of these short videos on covalent bonding:
- Covalent bonding <u>https://youtu.be/h24UmH38_LI</u>
- Dot and cross diagrams covalent bonding <u>https://youtu.be/QzytnZY67J8</u>
- Covalent bonding of hydrogen, oxygen and nitrogen https://youtu.be/0HfN3CvXP2M
- Covalent bonding in methane, water and ammonia <u>https://youtu.be/7mBokkBENWE</u>

2. Make key notes on the following using KS4 Bitesize https://www.bbc.co.uk/bitesize/guides/zxxn82p/revision/1

What a covalent bond is

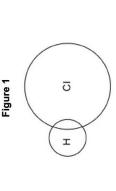
Properties of **simple covalent** compounds, including an explanation of these properties

Drawing stick diagrams & dot-cross diagrams

Stick diagrams – these show each covalent bond as a stick. Dot-cross diagrams – these show the outer shell electrons only

- 1 Draw a stick diagram
- 2 Re-draw the stick diagram without the sticks
- 3 Replace the stick with a X● which represents the two electrons in the bond (X represents electrons from one atom, and
 represents the electron from the other atom).
- 4 Add in any other outer shell electrons from each atom (electrons are always in pairs)
- 5 CHECK that there are 8 electrons around each atom (except H where there should be 2 electrons)

Stick diagram	Molecule	Dot-cross diagram
	H ₂ O	
	CO ₂	
	N ₂	
	H ₂ O	


ę.

This question is about hydrogen chloride.

(a) A hydrogen atom contains 1 electron and a chlorine atom contains 17 electrons.

Complete Figure 1 to show a dot and cross diagram for a hydrogen chloride molecule.

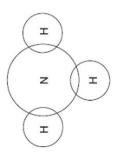
Show the outer electrons only.

Hydrogen gas (H_2) reacts with chlorine gas to produce hydrogen chloride.

(b) Complete the balanced chemical equation for the reaction between hydrogen and chlorine.

H₂ + ______

5

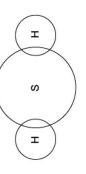

02.

(b) Hydrogen is used to make ammonia (NH₃).

Complete the diagram to show the bonding in ammonia.

Use dots (•) and crosses (x) to show electrons.

Show only outer shell electrons.



(q)

- A problem with lead compounds is that they slowly react with hydrogen sulfide in the air. This produces lead sulfide which is black.
- (j) Hydrogen sulfide has the formula H₂S. The bonding in a molecule of hydrogen sulfide can be represented as:

H-S-H

Complete the diagram below to show the arrangement of the outer electrons of the hydrogen and suffigurations in hydrogen suffide. Use dots (\bullet) and crosses (x) to represent the electrons. You need only show the outer shell electrons. (Atomic numbers: H = 1; S = 16.)

3

(ii) Hydrogen sulfide has a low boiling point.

Ē

Explain why.

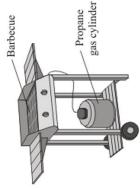
5

(iii) Lead white is also used in paint. The white colour slowly darkens when lead sulfide is produced. The painting can be restored with hydrogen peroxide. This converts the black lead sulfide into white lead sulfate.

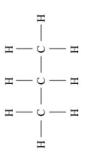
Balance the equation for the reaction between lead sulfide and hydrogen peroxide ($H_2 \Omega_2$).

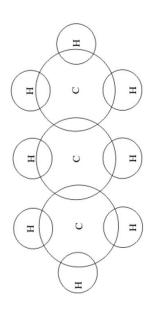

 $PbS(s) + H_2O_2(ag) \rightarrow PbSO_4(s) + 4H_2O(l)$

Covalent bonding exam questions

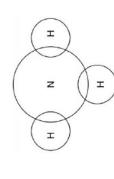


Write down everything that this diagram tells you about a methane molecule.


To gain full marks in this question you should write your ideas in good English. Put them into a sensible order and use the correct scientific words.



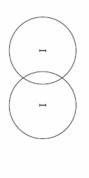
The structure of propane is shown below.


(a) Complete the diagram to show how the outer energy level (shell) electrons of hydrogen and carbon are arranged in a molecule of propane.

Q7.

This question is about ammonia (NH₃).

 (a) Complete the diagram to show the bonding electrons in ammonia. Show the outer electrons only.


(4)

Q8. (d) The bonding in iodine is similar to the bonding in chlorine.

5

(j) Complete the diagram below to show the bonding in iodine.

Show the outer electrons only.

(ii) Explain why iodine has a low melting point.