FURTHER MATHS SUMMER WORK 2024

Section	Торіс	Score	Review		/
1.1	Rearranging formulae	/32	\odot	(\odot
1.2	Turning points	/25	\odot	\bigcirc	::
1.3	Exponential graphs	/14	\odot	\bigcirc	\odot
1.4	Simultaneous equations	/38	\odot	\bigcirc	\odot

Approximate completion time: 3 hours

Deadline: Friday 2nd August 2024

Please email a photo of this completed front page to <u>jonesn@wallingfordschool.com</u>.

Be honest with your marking and complete the review of how confident you are with the work.

Please bring your completed questions to your first lesson in September, I am expecting to see full workings in your written work.

1.1 Rearranging formulae:

Video search: "Maths genie changing the subject 2" Link: <u>https://www.mathsgenie.co.uk/changing-the-subject2.html</u>

Question 1

Rearrange to make x the subject.

$$y = \frac{8(w-x)}{x}$$

Question 2

 $\mathsf{Make}\ m \ \mathsf{the}\ \mathsf{subject}\ \mathsf{of}$

$$f = \frac{4-3m}{5+m}$$

Question 3

Make r the subject of

$$m = \sqrt{\frac{6a+r}{5r}}$$

Question 4

Make x the subject of:

$$y = \frac{a^2 x + b}{2 - x}$$

Question 5

Make m the subject of

$$\frac{m}{v} - \frac{t}{b} = \frac{m-t}{R}$$

(4 marks)

(4 marks)

11 marks

(4 marks)

(4 marks)

(4 marks)

Make x the subject of the following, giving the larger of the two expressions you obtain: (4 marks)

$$y = \frac{x^2 + 1}{x + 1}$$

(Hint at end of paper)

(4 marks)

Question 7

Make *x* the subject of the following, **fully simplifying your answer**.

$$y + 2 = \frac{x+1}{x-y}$$

Question 8

Determine the **exact** value of x.

30° 45° 45° (4 marks)

1.2 Turning points:

Video Search: "Maths genie completing the square" Link: <u>https://www.mathsgenie.co.uk/completing-the-square.html</u>

Question 1

Here is a sketch of a curve.

The equation of the curve is $y = x^2 + ax + b$ where a and b are integers.

The points (0, -5) and (5,0) lie on the curve.

Find the coordinates of the turning point of the curve.

(2 marks)

(Hint at end of paper)

Question 2

The sketch shows the quadratic curve $y = 4(x - a)^2 + b$

The curve passes through (0,10) and (2,10)

Work out the values of a and b.

The point (-3, -4) is the turning point of the graph of $y = x^2 + ax + b$, where a and b are integers. Find the values of a and b.

(3 marks)

(Hint at end of paper)

Question 4

Find the coordinates of the minimum point of the graph with equation

$$y = 2x^2 + 12x - 2$$

(4 marks)

Question 5

Find the coordinates of the minimum point of the graph with equation

$$y = 3x^2 - 6x - 1$$

(4 marks)

Question 6

Find the coordinates of the maximum point of the graph with equation

$$y = -4x^2 - 4x - 2$$

(4 marks)

Question7

The minimum point of a graph is (2,0).

Given that the graph crosses the y -axis at (0,6), find an equation of the graph.

(4 marks)

(Hint at end of paper)

1.3 Exponential Graphs:

Video search: "Finding an exponential function through 2 points"

Question 1

The graph shown is exponential and its equation is in the form $y = a^x$.

Given that (2,25) lies on the graph, find the value of a.

Question 2

The graph shown is exponential and its equation is in the form $y = 4 \times a^x$.

Given that (2,144) lies on the graph, find the value of a.

Question 3

An exponential graph has equation $y = a \times 2^x$.

The point with coordinates (1,10) lies on the curve.

Find the value of a .

(2 marks)

The graph shown is of an equation of the form;

$$y = a \times b^x$$

A is the point (1,6) and B is the point (3,54).

Find the equation of the line by determining the values of a and b.

(4 marks)

Question 5

The diagram shows a sketch of the graph $y = ab^x$ The curve passes through the points A (0.5, 1) and B (2, 8).

The point C (-0.5, k) lies on the curve.

Find the value of k .

(4 marks)

1.4 Simultaneous Equations

Video search: "Maths genie simultaneous equations with a quadratic"

Link: https://www.mathsgenie.co.uk/simultaneous-quadratic.html

Question 1

Solve algebraically these simultaneous equations.

$$y = x^2 + 5x - 4$$
$$y = 8 - 3x$$

Give your answers correct to 2 decimal places.

(5 marks)

Question 2

Solve the simultaneous equations

$$y = 2x - 3$$
$$x^2 + y^2 = 2$$

(6 marks)

Question 3

Find the exact coordinates of the two intersections of the line y = 2x and the circle $x^2 + y^2 = 30$.

(5 marks)

Question 4 Challenge

Solve the pair of simultaneous equations

$$x^{2} + 3y = 10$$
 and
 $3 + y = \frac{10}{x}$

(6 marks)

Hint: To find solutions to a cubic equation = 0, substitute in factors of the constant term (the one without an x). If they make the equation = 0 they are a value of x. Don't forget to try + and – values.

Question 5 Challenge

Two numbers x and y are such that x + y = 20 and $\frac{1}{x} + \frac{1}{y} = \frac{1}{2}$.

What is the value of $x^2y + xy^2$?

(6 marks)

Hint: You don't need to find the values of x and y here. Factorise the final equation to find the expressions you need the values for.

Hints

1.1 Question 6 hint:

The problem with this question is that you have a term in x^2 . When you have multiplied up you now need to form a quadratic = 0. Solve this using the quadratic formula treating ys like numbers.

1.2 Question 1 hint:

Substitute the points into the quadratic $y = x^2 + ax + b$ to form a pair of simultaneous equations

1.2 Question 3 hint:

Substitute your turning point into the completed square form for a quadratic $y = (x + p)^2 + q$ and then multiply out to form your equation.

1.2 Question 7 hint:

This is almost the same as question 3 but you will need the form $y = a(x + p)^2 + q$ instead.

 $x = \frac{8w}{y+8}$

$yx = 8(w - x)$ or $y = \frac{8w - 8x}{x}$	M1			
yx = 8w - 8x	M1dep	oe eg $yx - 8w + 8x = 0$ Implies M1 M1		
$yx + 8x = 8w \text{or} x(y+8) = 8w$ $\text{or} \frac{8w}{y+8}$	M1dep	oe dep on M1 M1 Implies M1 M1 M1		
$x = \frac{8w}{y+8}$	A1	oe eg $\frac{-8w}{-y-8}$ Must have $x =$ SC2 $x = \frac{8w}{y+1}$ SC1 $\frac{8w}{y+1}$		

Question 2

$$m = \frac{4-5f}{f+3}$$

$$m = \frac{4-5f}{f+3}$$

$$M1 \text{ for multiplying bo}$$

$$M1 \text{ for correctly moviterms to the other side}$$

$$M1 \text{ for factorising}$$

$$A1 \text{ for } m = \frac{4-5f}{f+3} \text{ oe}$$

both sides by 5 + m as a first step wing their *m* terms to one side and their other de

Question 3

Question 4

$$x = \frac{2y - b}{a^2 + y}$$

M1 multiplying by 2 – x

M1 collecting x terms to one side

M1 isolating x terms

A1 correct answer

 $m = \frac{tv(R-b)}{b(R-v)}$ $\frac{mb-tv}{vb} = \frac{m-t}{R}$ $m = \frac{tv(R-b)}{c}$ 4 M1 for putting LHS over a common denominator with at least one b(R-v)correct numerator (ignore signs) or for showing an intention to mbR - tvR = mvb - tvbmbR - mvb = tvR - tvbmultiply each term on both sides by R or v or bM1 for rearranging correctly to isolate terms in m m(bR - vb) = tvR - tvbM1 for factorising with common factor *m* from 2 terms A1 for $m = \frac{tv(R-b)}{b(R-v)}$ oe OR $\frac{m}{v} - \frac{t}{b} = \frac{m}{R} - \frac{t}{R}$ $\frac{m}{v} - \frac{m}{R} = \frac{t}{b} - \frac{t}{R}$ $\frac{mR - mv}{mR - mv} = \frac{tR - tb}{mR - tb}$ vR bR $\frac{m(R-v)}{m(R-v)} = \frac{tR-tb}{tR-tb}$ vR bR

Question 6

$$x = \frac{y + \sqrt{y^2 - 4(1 - y)}}{2}$$

M1 multiplying by x + 1

M1 forming a quadratic = $0 x^2 - yx + (1 - y) = 0$

M1 attempting quadratic formula (or completing the square)

A1 Correct answer

Question 7

x = y + 1

Question 8

 $2 + 2\sqrt{3}$

1.2 Answers

Question 1

(2, -9)

(2, -9)	P1	substitutes $x = 0$, $y = -5$ into $y = x^2 + ax + b$ ($b = -5$) or substitutes $x = 5$, $y = 0$ into $y = x^2 + ax + b$ ($0 = 25 + 5a + b$) or starts process to find other intercept, eg writes $y = (x - 5)(x - k)$
	P1	for complete process to find two intercepts, eg. substitutes the second point into $y = x^2 + ax + b$ and solves to find a (= -4) and $b (= -5)or substitutes x = 0, y = -5 into y = (x - 5)(x - k)and solves to find k (= -1)$
	P1	(dep on P2) for factorising or completing the square of $x^2 + -4$, $x + -5$, and identifying the <i>x</i> -coordinate of the turning point or for a complete process to find the <i>x</i> -coordinate of the turning point, eg $(5 + -1)/2$
	A1	cao

a = 1

(1 (or a) is) Midway between 0 and 2B1oeor $\frac{2+0}{2} = 1$ or $\frac{2-0}{2} = 1$ B1Minimum point (at x = 1 (or x = a))B1oeorSymmetrical (about x = 1 (or x = a))B1

b = 6

$10 = 4 (0 - 1)^2 + b$	M1	oe eg $10 = 4 + b$
or		
$10 = 4 (2 - 1)^2 + b$		
6	A1	

Question 3

```
a = 6, b = 5
[a =] 6 [b =] 5
```

3	M1 for $y = (x + 3)^2 - 4$
1 AO1.3b 1 AO2.1a 1 AO3.1b	M1 for multiplying out and simplifying their $y = (x + 3)^2 - 4$

Question 4

(-3, -20)M 1 A1 $2(x + 3)^2 - 20$ $M12[x^2 + 6x] - 2$ **Question 5** (1, -4)M1 3[$x^2 - 2x$] – 1 M 1 A1 $3(x-1)^2 - 4$ A1 Correct answer **Question 6** $\left(-\frac{1}{2},-1\right)$ $M1 - 4[x^2 + x] - 2$ M 1 A1 $-4(x + 0.5)^2 - 1$ A1 Correct answer **Question 7** $y = \frac{3}{2}(x-2)^2$ M1 y = $a(x - 2)^2 + 0$ A1 a = 3/2 M1 6 = $a(-2)^2$ A1ft correct answer

1.3 Answers

Question 1

a = 5 M1 Substitute values, A1 correct answer

Question 2

a = 6 M1 Substitute values, A1 correct answer

Question 3

a = 5 M1 Substitute values, A1 correct answer

Question 4

- a = 2, b = 3
- M1 6 = ab and 54 = ab^{3}
- M1 division $b^2 = 9$

A1 b = 3, A1 a = 2

Question 5

$$k = \frac{1}{4}$$

$$1 = a \times b^{0.5}, 8 = a \times b^{2}$$

$$\frac{a \times b^{2}}{a \times b^{0.5}} = \frac{8}{1}$$

$$b^{\frac{3}{2}} = 8, b = 4 \ a = \frac{1}{2}$$

$$c = \frac{1}{2} \times 4^{-\frac{1}{2}}$$

$$k = \frac{1}{4}$$

$$k = \frac{1}{4}$$

$$M1 \text{ for } 1 = a \times b^{0.5}, 8 = a \times b^{2}$$

$$M1 \text{ for correct method to eliminate either } a \text{ or } b \text{ could be implied by}$$

$$\frac{a \times b^{2}}{a \times b^{0.5}} = \frac{8}{1} \text{ or } \frac{b^{2}}{b^{0.5}} = 8 \text{ or } 8 = a(\frac{1}{a^{2}})^{2} \text{ oe}$$

$$A1 \text{ for } b = 4 \ a = \frac{1}{2}$$

$$A1 \text{ for } k = \frac{1}{4} \text{ oe}$$

x = 1.29, y = 4.13 or x = -9.29, y = 35.87

x = 1.29, *y* = 4.13 *x* = -9.29, *y* = 35.87 = -9.29, y = 35.875 M2 for $x^2 + 8x - 12 [= 0]$ Or M1 for attempt to equate Eg $8 - 3x = x^2 + 5x - 4$ AND M1FT for substitution into quadratic formula $\frac{-8 \pm \sqrt{8^2 - 4 \times -12}}{2}$ A1 for x = 1.29, x = -9.29AND A1 for y = 4.13, y = 35.87After A0 allow SC1 for one pair of x and y values correct or for both y values correctly FT their x values substituted into y = 8 - 3x

FT *their* quadratic equation, condone one error dependent on at least **M1**

Allow A marks if solutions are clear in working, but transferred to wrong places on answer lines

Question 2

$$x = 1, y = -1$$
 or $x = \frac{7}{5}, y = -\frac{1}{5}$

$x^{2} + (2x - 3)^{2} = 2$		6	M1	for correct substitution
$x^2 + 4x^2 - 6x - 6x + 9 = 2$			B1	(indep) for correct expansion of
or $x^2 + 4x^2 - 12x + 9 = 2$				$(2x - 3)^2$ even if unsimplified
$5x^2 - 12x + 7 (= 0)$			B1	for correct simplification Condone omission of '= 0'
(5x - 7)(x - 1)(=0) or $\frac{12 \pm \sqrt{4}}{10}$ or $\frac{12}{10} \pm \frac{\sqrt{4}}{10}$ or $\frac{6}{5} \pm \frac{1}{5}$			B1	for correct factorisation or for correct substitution into quadratic formula and correct evaluation of $b^2 - 4ac'$ or for using square completion correctly as far as indicated
$x = 1$ or $x = 1\frac{2}{5}$			A1	for both values of x dep on all preceding marks
	x = 1, y = -1 $x = 1\frac{2}{5}, y = -\frac{1}{5}$		A1	for complete, correct solutions (need not be paired) dep on all preceding marks No marks for $x = 1$, $y = -1$ with no working

Question 3

$$x = \sqrt{6}$$
, $y = 2\sqrt{6}$ and $x = -\sqrt{6}$, $y = -2\sqrt{6}$

M1 x^2 + 4 x^2 = 30

M1 x² = 6

A1 x = $\sqrt{6}$ and A1 x = $-\sqrt{6}$

A1 Correct answer

 $x = 3, y = \frac{1}{3}$ or x = 2, y = 2 or x = -5, y = -5M1 $x^2 + 3\left(\frac{10}{x} - 3\right) = 10$ A1 $x^{3-19x} + 30 = 0$ M1 attempts to find x by substitution of a factor. A1 any one of x = 3, 2, or -5

A1 all of x = 3, 2, or -5

A1 correct answer

Question 5

800

We have that $\frac{1}{2} = \frac{1}{x} + \frac{1}{y} = \frac{x+y}{xy} = \frac{20}{xy}$. So $\frac{1}{2} = \frac{20}{xy}$ and hence xy = 40. Therefore $x^2y + xy^2 = xy(x+y) = 40 \times 20 = 800$.

M1 attempts to combine fractions

A1 correct combined fractions $\frac{x+y}{xy} = \frac{1}{2}$

- A1 correct factorization of target function xy(x+y)
- M1 attempts to find value of xy
- A1 correct value of xy =40
- A1 correct answer of 800