FURTHER MATHS SUMMER WORK 2024

Section	Торіс	Score		Review	/
2.1	Complex numbers part 1	/37	\odot	\bigcirc	$(\dot{0})$
2.2	Complex numbers part 2	/16	\odot	\bigcirc	$(\dot{0})$

Approximate completion time: 2 hours Deadline: Wednesday 4th September 2024

Be honest with your marking and complete the review of how confident you are with the work.

Please bring your completed questions to your first lesson in September, I am expecting to see full workings in your written work.

2.1 Complex Numbers

Video search:	"TLMaths – The complex conjugate"
Videos:	B3 - 01, B3 - 02
Video search:	"TLMaths – Working with complex numbers"
Videos:	B2 – 04, B2 – 05

Question 1

Given that z = 2 + 6i, write down the value of z^* , where z^* is the complex conjugate of z.

(1 mark)

Question 2

Given that z = 1 - 10i, write down the value of z^* , where z^* is the complex conjugate of z.

(1 mark)

Question 3

Write (i + 5)(2i - 3) in the form a + bi.

(2 marks)

Question 4

A complex number x is given by z = a + 2i where a is a non-zero real number.

- a) Find, in terms of a, $z^2 + 2z$
- b) Given that $z^2 + 2z$ is real, find the value of a.

(3 marks)

Question 5

The complex numbers z_1 and z_2 are given by $z_1 = 2 - 3i$ and $z_2 = a + 4i$ where a is a real number. Given that $z_1z_2 = (z_1z_2)^*$ find the value of a.

(2 marks)

Write (4 –	- 3i)²	in the form	a +	bi
------------	--------	-------------	-----	----

(2 marks)

(3 marks)

(2 marks)

Question 7

Express $(2 + 3i)^3$ in the form a + ib.

Question 8

z = 2 - 3i Find z^2 in its simplest form.

Question 9

 $z = 2 - i\sqrt{3}$ Use algebra to express $z + z^2$ in the form $a + bi\sqrt{3}$, where a and b are integers.

(3 marks)

Question 10

 $z = \frac{4}{1+i}$ Find z in the form a + ib where

(2 marks)

Question 11

The complex numbers z_1 and z_2 are given by

 $z_1 = 2 - i$ and $z_2 = -8 + 9i$

Find $\frac{z_2}{z_1}$ in the form a + bi, where a and b are real.

(3 marks)

Given that z = 2 - i, use algebra to express $\frac{z}{z^*}$ in the form a + bi, where a and b are constants to be found, and where z^* is the complex conjugate of z.

(3 marks)

Question 13

Given that z = 4 - i, use algebra to express $\frac{z+2}{z-3}$ in the form a + bi, where a and b are constants to be found.

(3 marks)

Question 14

 $z = 2 - i\sqrt{3}$

Use algebra to express $\frac{z+7}{z-1}$ in the form $c + di\sqrt{3}$, where c and d are integers.

(4 marks)

Question 15

The complex number w is given by $w = \frac{p-4i}{2-3i}$ where p is a real constant.

Express w in the form a + bi, where a and b are real constants. Give your answer in its simplest form in terms of p.

(3 marks)

2.2 Complex Numbers

Question 1

Given that $\frac{3w+7}{5} = \frac{p-4i}{3-i}$ where p is a real constant. Express w in the form a + bi, where a and b are real constants. Give your answer in its simplest form in terms of p.

(5 marks)

Question 2

 $z_1=2+3i\,,\ z_2=3+2i\,,\ z_3=a+bi\,,$

Given that $w = \frac{z_1 z_3}{z_2}$, find w in terms of a and b, giving your answer in the form x + iy,

(4 marks)

Question 3

Given that z = x + iy, find the value of x and the value of y such that

 $z + 3iz^* = -1 + 13i$

(7 marks)

 $z^* = 2 - 6i$ B1 correct answer

Question 2

 $z^* = 1 + 10i$ B1 correct answer

Question 3

-17 + 7i M1: $2i^2 - 3i + 10i - 15$, A1 correct answer

Question 4

a)	$a^2 + 2a - 4 + (4a + 4)i$	M1 multiplies out expression (at most 1 error) $a^2 + 4ai + 4i^2 + 2a + 4i$ and	
		correctly using i ² = -1	
		A1 Correct answer (with i terms collected, not necessarily with I factorised))
b)	a = -1	(b) and so $4a + 4 = 0 \rightarrow a = -1$	B1

Question 5

$$a = \frac{8}{3}$$

8-3a=0	M1	2.2a	Or $2a + 12 + (8 - 3a)i = 2a + 12 - (8 - 3a)i$	Setting imaginary part of (ii) to 0.
$a=\frac{8}{3}$	A1ft	1.1	or awrt 2.67	

Question 6

7 - 24i M1: expanded to get $16 - 12i - 12i + 9i^2$ and correctly using $i^2 = -1$ A1 correct answer

Question 7

-46 + 9i

2^{3} + 3 × 2^{2} × 3i + 3 × 2 × (3i) ² + (3i) ³	M1	1.1	Binomial expansion. Must be 4 terms with 1, 3, 3, 1 soi and correct powers. Condone missing brackets	Or by $(2 + 3i)^{2} \times (2 + 3i)$ but marks only to awarded once all binomial brackets expanded.
$2^{3} + 3 \times 2^{2} \times 3i - 3 \times 2 \times 3^{2} - 3^{3}i$ or better	A1	1.1	All correct and $i^2 = -1$ twice.	Must see evidence of i ² becoming -1 (could be in a table, expanding brackets etc)
-46 + 9i	A1	1.1		SC if the only working seen is (-5+12i)(2+3i) = -46+9i award B1

 $z^2 = -5 - 12i$

(a) $(2-3i)(2-3i) = \dots$	Expand and use $i^2 = -1$, getting completely co	rrect	M1
expansion of 3 or 4 ter	ms		
Reaches -5-12i	after completely correct work (must see $4-9$)	(*)	Alcso

Question 9

a = 3, b = -5

$z^{2} = (2 - i\sqrt{3})(2 - i\sqrt{3})$ = 4 - 2i\sqrt{3} - 2i\sqrt{3} + 3i^{2}	An attempt to multiply out the brackets to give four terms (or four terms implied).	M1
$= 2 - i\sqrt{3} + (4 - 4i\sqrt{3} - 3)$ $= 2 - i\sqrt{3} + (1 - 4i\sqrt{3})$	M1: An understanding that $i^2 = -1$ and an attempt to add z and put in the form $a + b i \sqrt{3}$	M1A1
$= 3 - 5i\sqrt{3}$ (Note: $a = 3, b = -5.$)	A1: $3 - 5i\sqrt{3}$	
$z + z^2 = 2 - i\sqrt{3} + (4 - 4i\sqrt{3} + 3) = 9 - 5i$	$\sqrt{3}$ scores M1M0A0 (No evidence of $i^2 = -1$)	

Question 10

z = 2 - 2i

(a) $z = \frac{4(1-i)}{(1+i)(1-i)}$	M1
z = 2(1-i) or $2-2i$ or exact equivalent.	Al

Question 11

-5 + 2i

$$\frac{-8+9i}{2-i} \times \frac{2+i}{2+i}$$
= $\frac{-16-8i+18i-9}{5} = -5+2i$ i.e. $a = -5$ and $b = 2$ or $-\frac{2}{5}a$

A1 A1ft

Question 12

 $a = \frac{3}{5}, b = -\frac{4}{5}$ M1: $\frac{2-i}{2+i} \times \frac{2-i}{2-i}$ A1, A1ft: $\frac{4-4i-1}{4+1} = \frac{3-4i}{5}$

Question 13

 $a = \frac{7}{2}, b = \frac{5}{2}$ M1: $\frac{6-i}{1-i} \times \frac{1+i}{1+i}$ A1, A1ft: $\frac{6+5i+1}{1+1} = \frac{7+5i}{2}$

$$c = 3, d = 2$$

$$\frac{z+7}{z-1} = \frac{2-i\sqrt{3}+7}{2-i\sqrt{3}-1}$$
Substitutes $z = 2 - i\sqrt{3}$ into both numerator and denominator.
$$M1$$

$$= \frac{\left(9 - i\sqrt{3}\right)}{\left(1 - i\sqrt{3}\right)} \times \frac{\left(1 + i\sqrt{3}\right)}{\left(1 + i\sqrt{3}\right)}$$
Simplifies $\frac{z+7}{z-1}$
and multiplies by $\frac{\text{their } \left(1 + i\sqrt{3}\right)}{\text{their } \left(1 + i\sqrt{3}\right)}$

$$M1$$

$$= \frac{9 + 9i\sqrt{3} - i\sqrt{3} + 3}{1+3}$$
Simplifies realising that a real number is needed in the denominator and applies $i^2 = -1$ in their numerator expression and denominator expression.
$$M1$$

$$M1$$

Question 15

$$\frac{2p+12}{13} + \frac{3p-8}{13}i$$

$$w = \frac{(p-4i)}{(2-3i)} \times \frac{(2+3i)}{(2+3i)}$$

$$= \left(\frac{2p+12}{13}\right) + \left(\frac{3p-8}{13}\right)i$$
At least one of either the real or imaginary part of w is correct. Must be expanded but could be unsimplified e.g. expressed as single fraction. Condone $a + ib$. Correct w in its simplest form. At

Question 1

2.2 Answers

$w = \frac{3p - 10}{6} + \left(\frac{p - 12}{6}\right)i$		
$\frac{3w+7}{5} = \frac{(p-4i)}{(3-i)} \times \frac{(3+i)}{(3+i)}$	Multiplies by $\frac{(3+i)}{(3+i)}$	
	or divide by $(9 - 3i)$ then multiply by	M1
	(9 + 3i)	
	(9 + 3i)	
$=\left(\frac{3p+4}{p-12}\right)+\left(\frac{p-12}{p-12}\right)$	Evidence of $(3-i)(3+i) = 10$ or $3^2 + 1^2$	BI
	or $9^2 + 3^2$	51
	Rearranges to $w =$	dM1
So, $w = \left(\frac{3p-10}{2}\right) + \left(\frac{p-12}{2}\right)i$	At least one of either the real or imaginary part of w is correct in any equivalent form	A1
6 6 6	Correct w in the form $a + bi$.	
	Accept $a + ib$.	A1

$\frac{12a-5b}{13} + \frac{5a+12b}{13}i$		
$\frac{z_1 z_3}{z_2} = \frac{(2+3i)(a+bi)}{3+2i}$	Substitutes for z_1, z_2 and z_3 and multiplies	
$=\frac{(2+3i)(a+bi)(3-2i)}{(3+2i)(3-2i)}$	by $\frac{3-21}{3-2i}$	M1
(3+2i)(3-2i) = 13	13 seen.	B1
$\frac{z_1 z_3}{z_2} = \frac{(12a - 5b) + (5a + 12b)i}{13}$	M1: Obtains a numerator with 2 real and 2 imaginary parts. A1: As stated or $\frac{(12a-5b)}{13} + \frac{(5a+12b)}{13}i$ ONLY.	dM1A1

Question 3

x = 5, y = -2

$z + 3iz^* = -1 + 13i$		
(x+iy)+3i(x-iy)	$z^* = x - iy$ Substituting $z = x + iy$ and their z^* into $z + 3iz^*$	B M
x + iy + 3ix + 3y = -1 + 13i	Correct equation in x and y with $i^2 = -1$. Can be implied.	A
(x+3y)+i(y+3x)=-1+13i		
Re part : $x + 3y = -1$ Im part : $y + 3x = 13$	An attempt to equate real and imaginary parts. Correct equations.	M A
3x + 9y = -3 $3x + y = 13$		
$8y = -16 \implies y = -2$	Attempt to solve simultaneous equations to find one of x or y. At least one of the equations must contain both x and y terms.	м
$x + 3y = -1 \implies x - 6 = -1 \implies x = 5$	Both $x = 5$ and $y = -2$.	A