Expanding brackets &simplifying expressions

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions – basic algebraic manipulation, indices and surds

Key points

- When you expand one set of brackets you must multiply everything inside the bracket by what is outside.
- When you expand two linear expressions, each with two terms of the form $ax + b$, where $a \neq 0$ and $b \neq 0$, you create four terms. Two of these can usually be simplified by collecting like terms.

Examples

Example 1 Expand $4(3x - 2)$

Example 2 Expand and simplify $3(x + 5) - 4(2x + 3)$

Example 3 Expand and simplify $(x + 3)(x + 2)$

Example 4 Expand and simplify $(x - 5)(2x + 3)$

Surds and rationalising the denominator

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions – basic algebraic manipulation, indices and surds

Key points

- A surd is the square root of a number that is not a square number, for example $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, etc.
- Surds can be used to give the exact value for an answer.
- $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
- \bullet $\frac{a}{\sqrt{a}} = \frac{\sqrt{a}}{b}$ \overline{b} = $\overline{\sqrt{b}}$
- To rationalise the denominator means to remove the surd from the denominator of a fraction.
- To rationalise $\frac{a}{b}$ you multiply the numerator and denominator by the surd \sqrt{b}
- To rationalise $\frac{a}{a}$ $\frac{a}{b+\sqrt{c}}$ you multiply the numerator and denominator by $b-\sqrt{c}$

Examples

Example 1 Simplify $\sqrt{50}$

$$
\sqrt{50} = \sqrt{25 \times 2}
$$

\n1 Choose two numbers that are
\nfactors of 50. One of the factors
\nmust be a square number
\n
$$
= \sqrt{25} \times \sqrt{2}
$$

\n
$$
= 5 \times \sqrt{2}
$$

\n
$$
= 5\sqrt{2}
$$

\n1 Choose two numbers that are
\nfactors of 50. One of the factors
\nmust be a square number
\n3 Use $\sqrt{25} = 5$
\n3 Use $\sqrt{25} = 5$

Example 2 Simplify $\sqrt{147} - 2\sqrt{12}$

Example 3 Simplify $(\sqrt{7} + \sqrt{2})(\sqrt{7} - \sqrt{2})$

3

Example 4 Rationalise $\frac{1}{6}$

Example 5 Rationalise and simplify $\frac{\sqrt{2}}{\sqrt{2}}$ 12

$$
\frac{\sqrt{2}}{\sqrt{12}} = \frac{\sqrt{2}}{\sqrt{12}} \times \frac{\sqrt{12}}{\sqrt{12}}
$$
\n
$$
= \frac{\sqrt{2} \times \sqrt{4 \times 3}}{12}
$$
\n
$$
= \frac{2\sqrt{2}\sqrt{3}}{12}
$$
\n
$$
= \frac{2\sqrt{2}\sqrt{3}}{12}
$$
\n
$$
= \frac{\sqrt{2}\sqrt{3}}{6}
$$
\n
$$
= \frac{2\sqrt{3}}{6}
$$
\n
$$
= \frac{2\sqrt{3}}{6}
$$
\n
$$
= \frac{2}{12}
$$
\n
$$
= \frac{\sqrt{2}\sqrt{3}}{6}
$$
\n
$$
= \frac{2}{12}
$$
\n
$$
= \frac{2}{12}
$$
\n
$$
= \frac{\sqrt{2}\sqrt{3}}{6}
$$
\n
$$
= \frac{2}{12}
$$
\n
$$
= \
$$

Rules of indices

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions – basic algebraic manipulation, indices and surds

Key points

- $a^m \times a^n = a^{m+n}$
- $\frac{a^m}{b} = a^{m-n}$ $\frac{a}{a} = a$ *a* $= a^{m-1}$
- $(a^m)^n = a^{mn}$
- $a^0 = 1$
- \bullet $\frac{1}{a^n}$ $a^n = \sqrt[n]{a}$ i.e. the *n*th root of *a*

1 92

> 2 273

$$
\bullet \qquad a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m
$$

$$
\bullet \qquad a^{-m} = \frac{1}{a^m}
$$

• The square root of a number produces two solutions, e.g. $\sqrt{16} = \pm 4$.

Examples

Example 1 Evaluate 10^0

Example 2 Evaluate

Example 3 Evaluate

i

Factorising expressions

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

- Factorising an expression is the opposite of expanding the brackets.
- A quadratic expression is in the form $ax^2 + bx + c$, where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is *b* and whose product is *ac*.
- An expression in the form $x^2 y^2$ is called the difference of two squares. It factorises to $(x - y)(x + y)$.

Examples

Example 1 Factorise $15x^2y^3 + 9x^4y$

Example 2 Factorise $4x^2 - 25y^2$

Example 3 Factorise $x^2 + 3x - 10$

Example 4 Factorise $6x^2 - 11x - 10$

Example 5 Simplify

2 $4x - 21$ $2x^2 + 9x + 9$ $x - 4x$ *x x* ーチェー $+9x+$

2

Completing the square

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

- Completing the square for a quadratic rearranges $ax^2 + bx + c$ into the form $p(x + q)^2 + r$
- If $a \neq 1$, then factorise using *a* as a common factor.

Examples

Example 1 Complete the square for the quadratic expression $x^2 + 6x - 2$

$$
\begin{bmatrix}\n2x^2 - 5x + 1 \\
2x^2 - 5x + 1\n\end{bmatrix}
$$
\n
$$
= 2\left(x^2 - \frac{5}{2}x\right) + 1
$$
\n
$$
= 2\left[\left(x - \frac{5}{4}\right)^2 - \left(\frac{5}{4}\right)^2\right] + 1
$$
\n
$$
= 2\left[\left(x - \frac{5}{4}\right)^2 - \left(\frac{5}{4}\right)^2\right] + 1
$$
\n
$$
= 2\left(x - \frac{5}{4}\right)^2 - \frac{25}{8} + 1
$$
\n
$$
= 2\left(x - \frac{5}{4}\right)^2 - \frac{25}{8} + 1
$$
\n
$$
= 2\left(x - \frac{5}{4}\right)^2 - \frac{25}{8} + 1
$$
\n
$$
= 2\left(x - \frac{5}{4}\right)^2 - \frac{17}{8}
$$
\n
$$
= 2\left(x - \frac{5}{4}\right)^2 - \frac{17}{8}
$$
\n3 Expand the square brackets – don't forget to multiply $\left(\frac{5}{4}\right)^2$ by the factor of 2.

Solving quadratic equations by factorisation

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

- A quadratic equation is an equation in the form $ax^2 + bx + c = 0$ where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is *b* and whose products is *ac*.
- When the product of two numbers is 0, then at least one of the numbers must be 0.
- If a quadratic can be solved it will have two solutions (these may be equal).

Examples

Example 1 Solve $5x^2 = 15x$

Example 2 Solve $x^2 + 7x + 12 = 0$

Example 3 Solve $9x^2 - 16 = 0$

Example 4 Solve $2x^2 - 5x - 12 = 0$

Solving quadratic equations by using the formula

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

Any quadratic equation of the form $ax^2 + bx + c = 0$ can be solved using the formula 2 *b b ac*

$$
x = \frac{-b \pm \sqrt{b^2 - 4a}}{2a}
$$

- If $b^2 4ac$ is negative then the quadratic equation does not have any real solutions.
- It is useful to write down the formula before substituting the values for a , b and c .

Examples

Example 7 Solve $x^2 + 6x + 4 = 0$. Give your solutions in surd form.

$a = 1, b = 6, c = 4$	1	Identity <i>a, b</i> and <i>c</i> and write down the formula.
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	1	Identity <i>a, b</i> and <i>c</i> and write down the formula.
$x = \frac{-6 \pm \sqrt{6^2 - 4(1)(4)}}{2(1)}$	2	Substitute $a = 1, b = 6, c = 4$ into the formula.
$x = \frac{-6 \pm \sqrt{20}}{2}$	3	Simplify. The denominator is 2, but this is only because $a = 1$. The denominator will not always be 2.
$x = \frac{-6 \pm 2\sqrt{5}}{2}$	4	Simplify $\sqrt{20}$.
$x = -3 \pm \sqrt{5}$	5	Simplify by dividing numerator and denominator by 2.
So $x = -3 - \sqrt{5}$ or $x = \sqrt{5} - 3$	6	Write down both the solutions.

Example 8 Solve $3x^2 - 7x - 2 = 0$. Give your solutions in surd form.

 \overline{a}

Solving linear simultaneous equations using the elimination method

A LEVEL LINKS

Scheme of work: 1c. Equations – quadratic/linear simultaneous

Key points

- Two equations are simultaneous when they are both true at the same time.
- Solving simultaneous linear equations in two unknowns involves finding the value of each unknown which works for both equations.
- Make sure that the coefficient of one of the unknowns is the same in both equations.
- Eliminate this equal unknown by either subtracting or adding the two equations.

Examples

Example 1 Solve the simultaneous equations $3x + y = 5$ and $x + y = 1$

Example 2 Solve $x + 2y = 13$ and $5x - 2y = 5$ simultaneously.

Example 3 Solve $2x + 3y = 2$ and $5x + 4y = 12$ simultaneously.

Solving linear and quadratic simultaneous equations

A LEVEL LINKS

Scheme of work: 1c. Equations – quadratic/linear simultaneous

Key points

- Make one of the unknowns the subject of the linear equation (rearranging where necessary).
- Use the linear equation to substitute into the quadratic equation.
- There are usually two pairs of solutions.

Examples

Example 1 Solve the simultaneous equations $y = x + 1$ and $x^2 + y^2 = 13$

Example 2 Solve $2x + 3y = 5$ and $2y^2 + xy = 12$ simultaneously.

Linear inequalities

A LEVEL LINKS

Scheme of work: 1d. Inequalities – linear and quadratic (including graphical solutions)

Key points

- Solving linear inequalities uses similar methods to those for solving linear equations.
- When you multiply or divide an inequality by a negative number you need to reverse the inequality sign, e.g. < becomes >.

Examples

Example 1 Solve $-8 \le 4x < 16$

Example 2 Solve $4 \le 5x < 10$

Example 3 Solve $2x - 5 < 7$

Example 4 Solve $2 - 5x \ge -8$

Example 5 Solve $4(x - 2) > 3(9 - x)$

Straight line graphs

A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

- A straight line has the equation $y = mx + c$, where *m* is the gradient and *c* is the *y*-intercept (where $x = 0$).
- The equation of a straight line can be written in the form $ax + by + c = 0$, where *a*, *b* and *c* are integers.
- When given the coordinates (x_1, y_1) and (x_2, y_2) of two points on a line the gradient is calculated using the

formula
$$
m = \frac{y_2 - y_1}{x_2 - x_1}
$$

Examples

Example 1 A straight line has gradient $-\frac{1}{3}$ $-\frac{1}{2}$ and *y*-intercept 3.

Write the equation of the line in the form $ax + by + c = 0$.

Example 2 Find the gradient and the *y*-intercept of the line with the equation $3y - 2x + 4 = 0$.

Example 3 Find the equation of the line which passes through the point $(5, 13)$ and has gradient 3.

Example 4 Find the equation of the line passing through the points with coordinates (2, 4) and (8, 7).

Parallel and perpendicular lines

A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

- When lines are parallel they have the same gradient.
- A line perpendicular to the line with equation $y = mx + c$ has gradient $-\frac{1}{c}$ $-\frac{1}{m}$.

Examples

Example 1 Find the equation of the line parallel to $y = 2x + 4$ which passes through the point $(4, 9)$.

Example 2 Find the equation of the line perpendicular to $y = 2x - 3$ which passes through the point $(-2, 5)$.

Trigonometry in right-angled triangles

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs

Key points

- In a right-angled triangle:
	- o the side opposite the right angle is called the hypotenuse
	- o the side opposite the angle θ is called the opposite
	- o the side next to the angle *θ* is called the adjacent.

- In a right-angled triangle:
	- o the ratio of the opposite side to the hypotenuse is the sine of angle θ , $\sin \theta = \frac{\text{opp}}{\sqrt{2}}$ hyp
	- o the ratio of the adjacent side to the hypotenuse is the cosine of angle θ , $\cos \theta = \frac{\text{adj}}{\text{hyp}}$ $\theta =$
	- o the ratio of the opposite side to the adjacent side is the tangent of angle θ , $\tan \theta = \frac{\text{opp}}{\theta}$ adj
- If the lengths of two sides of a right-angled triangle are given, you can find a missing angle using the inverse trigonometric functions: \sin^{-1} , \cos^{-1} , \tan^{-1} .
- The sine, cosine and tangent of some angles may be written exactly.

Examples

Example 1 Calculate the length of side *x*. Give your answer correct to 3 significant figures.

Example 3 Calculate the exact size of angle *x*.

The cosine rule

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs **Textbook:** Pure Year 1, 9.1 The cosine rule

Key points

• *a* is the side opposite angle A. *b* is the side opposite angle B. *c* is the side opposite angle C.

- You can use the cosine rule to find the length of a side when two sides and the included angle are given.
- To calculate an unknown side use the formula $a^2 = b^2 + c^2 2bc \cos A$.
- Alternatively, you can use the cosine rule to find an unknown angle if the lengths of all three sides are given.
- To calculate an unknown angle use the formula $\cos A = \frac{b^2 + c^2 a^2}{2}$ $cos A = \frac{ }{2}$ $A = \frac{b^2 + c^2 - a}{a}$ *bc* $=\frac{b^{2}+c^{2}-a^{2}}{2}$.

Examples

Example 4 Work out the length of side *w*. Give your answer correct to 3 significant figures.

Example 5 Work out the size of angle *θ*. Give your answer correct to 1 decimal place.

The sine rule

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs **Textbook:** Pure Year 1, 9.2 The sine rule

Key points

• *a* is the side opposite angle A. *b* is the side opposite angle B. *c* is the side opposite angle C.

- You can use the sine rule to find the length of a side when its opposite angle and another opposite side and angle are given.
- To calculate an unknown side use the formula $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin A}$ *^a b ^c* $\frac{D}{A} = \frac{D}{\sin B} = \frac{c}{\sin C}$.
- Alternatively, you can use the sine rule to find an unknown angle if the opposite side and another opposite side and angle are given.
- To calculate an unknown angle use the formula $\frac{\sin A}{\sin A} = \frac{\sin B}{\sin B} = \frac{\sin C}{\sin C}$ $\frac{dA}{a} = \frac{\sin b}{b} = \frac{\sin c}{c}$.

Examples

1 Always start by labelling the angles and sides. 10 cm 36 75° *^a b* **2** Write the sine rule to find the side. $\sin A$ $\sin B$ 10 *x* **3** Substitute the values *a*, *b*, *A* and *B* $\sin 75^\circ$ sin 36° sin 75 into the formula. $x = \frac{10 \times \sin 36^{\circ}}{\sin 75^{\circ}}$ $10\times$ sin 36 **4** Rearrange to make *x* the subject. **5** Round your answer to 3 significant $x = 6.09$ cm figures and write the units in your answer.

 127° **Example 7** Work out the size of angle *θ*. 8 cm Give your answer correct to 1 decimal place. θ 14 cm \overline{B} **1** Always start by labelling the angles 27 and sides. 8 cm θ \bar{b} A 14 cm $\sin A$ $\sin B$ **2** Write the sine rule to find the angle. $\frac{a}{a}$ – $\frac{b}{b}$ **3** Substitute the values *a*, *b*, *A* and *B* $\sin \theta$ sin127° into the formula. $=$ 8 14 $\sin \theta = \frac{8 \times \sin 127^{\circ}}{8 \times 10^{\circ}}$ **4** Rearrange to make $\sin \theta$ the subject. 14 **5** Use sin−1 to find the angle. Round $\theta = 27.2^\circ$ your answer to 1 decimal place and write the units in your answer.

Areas of triangles

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs **Textbook:** Pure Year 1, 9.3 Areas of triangles

Key points

- *a* is the side opposite angle A. *b* is the side opposite angle B. *c* is the side opposite angle C.
- The area of the triangle is $\frac{1}{a}ab\sin\theta$ $rac{1}{2}$ *ab* sin C.

Examples

Example 8 Find the area of the triangle.

Rearranging equations

A LEVEL LINKS

Scheme of work: 6a. Definition, differentiating polynomials, second derivatives **Textbook:** Pure Year 1, 12.1 Gradients of curves

Key points

- To change the subject of a formula, get the terms containing the subject on one side and everything else on the other side.
- You may need to factorise the terms containing the new subject.

Examples

Example 2 Make *t* the subject of the formula $r = 2t - \pi t$.

Example 3 Make *t* the subject of the formula $\frac{t+r}{1-r} = \frac{3}{5}$ 5 2 $\frac{t+r}{t} = \frac{3t}{2}$.

