Extension questions – Summer holiday work

Expanding brackets and simplifying expressions

- 1 Expand and simplify $(x + 3)^2 + (x 4)^2$
- 2 Expand and simplify.

a
$$\left(x+\frac{1}{x}\right)\left(x-\frac{2}{x}\right)$$
 b $\left(x+\frac{1}{x}\right)^2$

Surds and rationalising the denominator

- **3** Expand and simplify $\left(\sqrt{x} + \sqrt{y}\right)\left(\sqrt{x} \sqrt{y}\right)$
- 4 Rationalise and simplify, if possible.

a
$$\frac{1}{\sqrt{9}-\sqrt{8}}$$
 b $\frac{1}{\sqrt{x}-\sqrt{y}}$

Rules of indices

5 Write as sums of powers of *x*.

a
$$\frac{x^5 + 1}{x^2}$$
 b $x^2 \left(x + \frac{1}{x} \right)$ **c** $x^{-4} \left(x^2 + \frac{1}{x^3} \right)$

Factorising expressions

6 Simplify $\sqrt{x^2 + 10x + 25}$

7 Simplify
$$\frac{(x+2)^2 + 3(x+2)^2}{x^2 - 4}$$

Completing the square

8 Write the following quadratic expressions in the form $p(x+q)^2 + r$

- **a** $2x^2 8x 16$ **b** $4x^2 - 8x - 16$ **c** $3x^2 + 12x - 9$ **d** $2x^2 + 6x - 8$
- 9 Complete the square.

a	$2x^2 + 3x + 6$	b	$3x^2 - 2x$
c	$5x^2 + 3x$	d	$3x^2 + 5x + 3$

10 Write $(25x^2 + 30x + 12)$ in the form $(ax + b)^2 + c$.

Solving linear simultaneous equations using the elimination method

11 Solve the simultaneous equations 3x + 5y - 20 = 0 and $2(x + y) = \frac{3(y - x)}{4}$.

Solving linear and quadratic simultaneous equations

 12
 x - y = 1 13
 y - x = 2

 $x^2 + y^2 = 3$ $x^2 + xy = 3$

Linear inequalities

14 Find the set of values of x for which 2x + 1 > 11 and 4x - 2 > 16 - 2x.

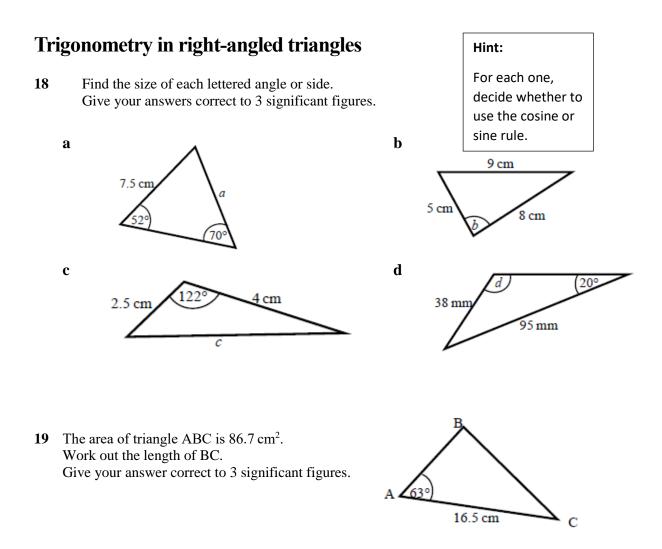
Straight line graphs

15 The equation of a line is 2y + 3x - 6 = 0. Write as much information as possible about this line.

Parallel and perpendicular lines

16 Work out whether these pairs of lines are parallel, perpendicular or neither.

	y = 2x + 3 $y = 2x - 7$	b	y = 3x $2x + y - 3 = 0$		y = 4x - 3 $4y + x = 2$
d	3x - y + 5 = 0 $x + 3y = 1$	e	2x + 5y - 1 = 0 $y = 2x + 7$	f	2x - y = 6 $6x - 3y + 3 = 0$


17 The straight line L_1 passes through the points *A* and *B* with coordinates (-4, 4) and (2, 1), respectively.

a Find the equation of \mathbf{L}_1 in the form ax + by + c = 0

The line L_2 is parallel to the line L_1 and passes through the point *C* with coordinates (-8, 3). **b** Find the equation of L_2 in the form ax + by + c = 0

The line L_3 is perpendicular to the line L_1 and passes through the origin.

c Find an equation of L_3

Rearranging equations

20 Make *x* the subject of the following equations.

a
$$\frac{p}{q}(sx+t) = x-1$$
 b $\frac{p}{q}(ax+2y) = \frac{3p}{q^2}(x-y)$

Answers - Extension questions - Summer holiday work

- 1 $2x^2 2x + 25$ **2 a** $x^2 - 1 - \frac{2}{r^2}$ **b** $x^2 + 2 + \frac{1}{r^2}$ **3** x - y**b** $\frac{\sqrt{x} + \sqrt{y}}{x - y}$ **4 a** $3+2\sqrt{2}$ **5 a** $x^3 + x^{-2}$ **b** $x^3 + x$ **c** $x^{-2} + x^{-7}$ **6** (x+5)7 $\frac{4(x+2)}{x-2}$ 8 a $2(x-2)^2 - 24$ **b** $4(x-1)^2 - 20$ **d** $2\left(x+\frac{3}{2}\right)^2-\frac{25}{2}$ **c** $3(x+2)^2 - 21$ 9 a $2\left(x+\frac{3}{4}\right)^2+\frac{39}{8}$ **b** $3\left(x-\frac{1}{3}\right)^2-\frac{1}{3}$ **d** $3\left(x+\frac{5}{6}\right)^2+\frac{11}{12}$ c $5\left(x+\frac{3}{10}\right)^2-\frac{9}{20}$ **10** $(5x+3)^2 + 3$ 11 $x = -2\frac{1}{2}, y = 5\frac{1}{2}$
- 12 $x = \frac{1+\sqrt{5}}{2}, y = \frac{-1+\sqrt{5}}{2}$

$$x = \frac{1-\sqrt{5}}{2}, y = \frac{-1-\sqrt{5}}{2}$$

13
$$x = \frac{-1 + \sqrt{7}}{2}, y = \frac{3 + \sqrt{7}}{2}$$

 $x = \frac{-1 - \sqrt{7}}{2}, y = \frac{3 - \sqrt{7}}{2}$

14 x > 5 (which also satisfies x > 3)

15 $y = -\frac{3}{2}x + 3$, the gradient is $-\frac{3}{2}$ and the *y*-intercept is 3. The line intercepts the axes at (0, 3) and (2, 0).

Students may sketch the line or give coordinates that lie on the line such as $\left(1, \frac{3}{2}\right)$ or $\left(4, -3\right)$.

16	a	Parallel	b	Neither	c	Perpendicular		
	d	Perpendicular	e	Neither	f	Parallel		
17	a	x + 2y - 4 = 0	b	x + 2y + 2 = 0	c	y = 2x		
18	a	6.29 cm	b	84.3°	c	5.73 cm	d	58.8°

19 15.3 cm

20 a
$$x = \frac{q + pt}{q - ps}$$
 b $x = \frac{3py + 2pqy}{3p - apq} = \frac{y(3 + 2q)}{3 - aq}$