Questions – Summer holiday work

Expanding brackets and simplifying expressions

1 Expand and simplify.

a	7(3x+5)+6(2x-8)	b	9(3s+1) - 5(6s-10)
c	4p(2p-1) - 3p(5p-2)	d	3b(4b-3) - b(6b-9)
e	(2x+3)(x-1)	f	(5x-3)(2x-5)
g	$(x + 5)^2$		

Surds and rationalising the denominator

- 2 Expand and simplify.
 - **a** $(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})$ **b** $(4-\sqrt{5})(\sqrt{45}+2)$
- **3** Rationalise and simplify.

a
$$\frac{1}{3-\sqrt{5}}$$
 b $\frac{2}{4+\sqrt{3}}$ **c** $\frac{6}{5-\sqrt{2}}$

Rules of indices

4 Simplify.

a
$$\frac{3x^2 \times x^3}{2x^2}$$
 b $\frac{7x^3y^2}{14x^5y}$ **c** $\frac{y^2}{y^{\frac{1}{2}} \times y}$
d $\frac{c^{\frac{1}{2}}}{c^2 \times c^{\frac{3}{2}}}$ **e** $\frac{(2x^2)^3}{4x^0}$ **f** $\frac{x^{\frac{1}{2}} \times x^{\frac{3}{2}}}{x^{-2} \times x^3}$

5 Write the following as a single power of *x*.

a	$\frac{1}{x}$	b	$\frac{1}{x^7}$	C	$\sqrt[4]{x}$
d	$\sqrt[5]{x^2}$	e	$\frac{1}{\sqrt[3]{x}}$	f	$\frac{1}{\sqrt[3]{x^2}}$

6 Write the following without negative or fractional powers.

9	r^0	h	$\frac{2}{\sqrt{5}}$	C	$\frac{1}{2}$	d	- 3
a	\mathcal{A}	U	\mathcal{A}	L	\mathcal{A}	u	л

.

7 Write the following in the form ax^n .

a
$$5\sqrt{x}$$
 b $\frac{2}{x^3}$ **c** $\frac{1}{3x^4}$ **d** 3

Factorising expressions

8 Factorise.

a	$6x^4y^3 - 10x^3y^4$	b	$21a^3b^5 + 35a^5b^2$
c	$25x^2y^2 - 10x^3y^2 + 15x^2y^3$	d	$x^2 + 7x + 12$
e	$x^2 + 5x - 14$	f	$x^2 - 11x + 30$
g	$x^2 - 5x - 24$	h	$x^2 - 3x - 40$
i	$x^2 + 3x - 28$	j	$36x^2 - 49y^2$
k	$4x^2 - 81y^2$	1	$18a^2 - 200b^2c^2$
m	$2x^2 + x - 3$	n	$6x^2 + 17x + 5$
0	$10x^2 + 21x + 9$	р	$12x^2 - 38x + 20$

9 Simplify the algebraic fractions.

a	$\frac{2x^2 + 4x}{x^2 - x}$	b	$\frac{x^2 - 5x}{x^2 - 25}$
c	$\frac{x^2 - x - 12}{x^2 - 4x}$	d	$\frac{2x^2 + 14x}{2x^2 + 4x - 70}$

Completing the square

10 Write the following quadratic expressions in the form $(x + p)^2 + q$ **a** $x^2 + 4x + 3$ **b** $x^2 - 10x - 3$ **c** $x^2 - 8x$ **d** $x^2 + 6x$

Solving quadratic equations by factorisation

11	Sol	ve		
	a	$x^2 - 3x = 10$	b	$x^2 - 3 = 2x$
	c	$x^2 + 5x = 24$	d	$x^2 - 42 = x$
	e	x(x+2) = 2x + 25	f	$x^2 - 30 = 3x - 2$
	g	$x(3x+1) = x^2 + 15$	h	3x(x-1) = 2(x+1)

Hint Get all terms onto one side of the equation.

Solving quadratic equations by using the formula

- **12** Solve, giving your solutions in surd form. $3x^2 + 6x + 2 = 0$
- **13** Solve the equation $x^2 7x + 2 = 0$

Give your solutions in the form $\frac{a \pm \sqrt{b}}{c}$, where *a*, *b* and *c* are integers.

Solving linear simultaneous equations using the elimination method

14 Solve these simultaneous equations.

a 4x + y = 8 x + y = 5 **b** 3x + y = 7 3x + 2y = 5 **c** 2x + y = 11 x - 3y = 9 **d** 2x + 3y = 113x + 2y = 4

Solving linear and quadratic simultaneous equations

- **15** Solve these simultaneous equations.
- **a** y = 2x + 1 $x^{2} + y^{2} = 10$ **b** y = 6 - x $x^{2} + y^{2} = 20$ **c** y = x - 3 $x^{2} + y^{2} = 5$ **d** y = 9 - 2x $x^{2} + y^{2} = 17$
- e y = x + 5 $x^2 + y^2 = 25$ f y = 2x - 1 $x^2 + xy = 24$
- **g** y = 2x $y^2 - xy = 8$ **h** 2x + y = 11xy = 15

Linear inequalities

16 Solve these inequalities.

a	$\frac{x}{5} < -4$	b	$10 \ge 2x + 3$	c	7 - 3x > -5
d	$2 - 4x \ge 18$	e	$3 \le 7x + 10 < 45$	f	$6-2x \ge 4$
g	$-4x \ge 24$	h	3t + 1 < t + 6	i	$2(3n-1) \ge n+5$
j	3(2-x) > 2(4-x) -	⊦ 4			
k	5(4-x) > 3(5-x) -	+ 2			

Straight line graphs

17 Find the gradient and the *y*-intercept of the following equations.

a	y = 3x + 5	b	$y = -\frac{1}{2}x - 7$	
c	2y = 4x - 3	d	x + y = 5	Hint Rearrange the equations
e	2x - 3y - 7 = 0	f	5x + y - 4 = 0	to the form $y = mx + c$

18 Copy and complete the table, giving the equation of the line in the form y = mx + c.

Gradient	y-intercept	Equation of the line
5	0	
-3	2	
4	—7	

- **19** Find, in the form ax + by + c = 0 where *a*, *b* and *c* are integers, an equation for each of the lines with the following gradients and *y*-intercepts.
 - **a** gradient $-\frac{1}{2}$, y-intercept -7 **b** gradient -1.2, y-intercept -2
- 20 Write an equation for the line which passes though the point (2, 5) and has gradient 4.
- 21 Write an equation for the line which passes through the point (6, 3) and has gradient $-\frac{2}{3}$
- Write an equation for the line passing through each of the following pairs of points.
 a (4, 5), (10, 17)
 b (3, 10), (4, 7)

Parallel and perpendicular lines

23 Find the equation of the line parallel to each of the given lines and which passes through each of the given points.

a y = 3x + 1 (3, 2) **b** 2y - 3x + 2 = 0 (8, 20)

- 24 Find the equation of the line perpendicular to each of the given lines and which passes through each of the given points.
 - **a** y = 2x 6 (4, 0) **b** 5y + 2x - 5 = 0 (6, 7)
- **25** In each case find an equation for the line passing through the origin which is also perpendicular to the line joining the two points given.
 - **a** (4, 3), (-2, -9) **b** (0, 3), (-10, 8)

Trigonometry in right-angled triangles

26 Calculate the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.

- 27 Calculate the size of angle *x* in each triangle. Give your answers correct to 1 decimal place.
 - a

28 Work out the height of the isosceles triangle. Give your answer correct to 3 significant figures.

Hint:

Split the triangle into two right-angled triangles.

29 Calculate the size of angle θ . Give your answer correct to 1 decimal place.

Hint:

First work out the length of the common side to both triangles, leaving your answer in surd form.

30 Find the exact value of *x* in each triangle.

The cosine rule

a

31 Work out the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.

10 cm

(95 Z

32 Calculate the angles labelled θ in each triangle. Give your answer correct to 1 decimal place.

1 decimal place.

b

The sine rule

34 Find the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.

b

b

35 Calculate the angles labelled θ in each triangle. Give your answer correct to 1 decimal place.

- **36a** Work out the length of QS. Give your answer correct to 3 significant figures.
 - **b** Work out the size of angle RQS. Give your answer correct to 1 decimal place.

Areas of triangles

Work out the area of each triangle.Give your answers correct to 3 significant figures.

38 The area of triangle XYZ is 13.3 cm².Work out the length of XZ.

Rearranging equations

- **39** Change the subject of each formula to the letter given in the brackets.
- **a** $C = \pi d$ [d] **b** P = 2l + 2w [w] **c** $D = \frac{S}{T}$ [T] **d** $p = \frac{q - r}{t}$ [t] **e** $u = at - \frac{1}{2}t$ [t] **f** V = ax + 4x [x] **g** $x = \frac{b - c}{d}$ [d] **h** $h = \frac{7g - 9}{2 + g}$ [g] **i** e(9 + x) = 2e + 1 [e] **j** $y = \frac{2x + 3}{4 - x}$ [x]
- 40 Make *r* the subject of the following formulae.

a $A = \pi r^2$ **b** $V = \frac{4}{3}\pi r^3$ **c** $P = \pi r + 2r$ **d** $V = \frac{2}{3}\pi r^2 h$

41 Make *x* the subject of the following formulae.

a
$$\frac{xy}{z} = \frac{ab}{cd}$$
 b $\frac{4\pi cx}{d} = \frac{3z}{py^2}$

42 Make sin *B* the subject of the formula $\frac{a}{\sin A} = \frac{b}{\sin B}$

43 Make $\cos B$ the subject of the formula $b^2 = a^2 + c^2 - 2ac \cos B$.

<u>Answers - Questions – Summer holiday work</u>

1	a h	21x + 35 + 12x - 48 27s + 9 - 30s + 50 - 50	= 33x	- 13 59 - 59	0_2	ç					
	c	$2p - 7p^2$. –33 +	57 - 5) – 3	J					
	d	$6b^2$									
	e	$2x^2 + x - 3$									
	f a	$10x^2 - 31x + 15$ $x^2 + 10x + 25$									
	g	x + 10x + 23									
2	a	-1			b	$10\sqrt{5}-7$					
3	a	$\frac{3+\sqrt{5}}{4}$			b	$\frac{2(4-\sqrt{3})}{12}$		c	6(5	$\frac{5+\sqrt{2}}{22}$	
		4				13				23	
4	a	$\frac{3x^3}{2}$	b	$\frac{y}{2^2}$		c	$y^{\frac{1}{2}}$		d	c^{-3}	
	е	2^{2}	f	$2x^{-}$							
	C		-								
5	a	x^{-1}	b	<i>x</i> ⁻⁷		c	$x^{\frac{1}{4}}$				
	d	$x^{\frac{2}{5}}$	P	$x^{-\frac{1}{3}}$		f	$x^{-\frac{2}{3}}$				
	u		C			ľ					
6	а	1	b	$\sqrt[5]{x^2}$		с	_1		d	1	
							\sqrt{x}			$\sqrt[4]{x^3}$	
7	0	5 ²	Ь	2 -3			14		d	2 20	
/	a	3x2	U	$\Delta \lambda$		t	$\frac{-x}{3}$		u	5.4	
8	a	$2x^3y^3(3x-5y)$			b	$7a^3b^2(3b^3+5a^2)$	c		$5x^2y^2$	(5-2x+3y)	
	d	(x+3)(x+4)			e	(x+7)(x-2)	f		(<i>x</i> – 5	(x-6)	
	g	(x-8)(x+3)			h	(x-8)(x+5)	i		(<i>x</i> + 7	(x - 4)	
	j	(6x-7y)(6x+7y)			k	(2x-9y)(2x+9y	y) l		2(3 <i>a</i> -	(-10bc)(3a + 10bc)	c)
	m	(x-1)(2x+3)			n	(3x+1)(2x+5)	0		(5 <i>x</i> +	3)(2 <i>x</i> +3)	
	р	2(3x-2)(2x-5)									
9	a	$\frac{2(x+2)}{x-1}$			b	$\frac{x}{x+5}$ c	<u></u>	$\frac{+3}{x}$	d	$\frac{x}{x-5}$	
		~~ ±						~~		~ ~	

- **10 a** $(x+2)^2 1$ **b** $(x-5)^2 - 28$ c $(x-4)^2 - 16$ **d** $(x+3)^2 - 9$
- **11 a** x = -2 or x = 5**b** x = -1 or x = 3**c** x = -8 or x = 3**d** x = -6 or x = 7**e** x = -5 or x = 5**f** x = -4 or x = 7**h** $x = -\frac{1}{3}$ or x = 2**g** $x = -3 \text{ or } x = 2\frac{1}{2}$
- 12 $x = -1 + \frac{\sqrt{3}}{3}$ or $x = -1 \frac{\sqrt{3}}{3}$ 13 $x = \frac{7 + \sqrt{41}}{2}$ or $x = \frac{7 \sqrt{41}}{2}$ **b** x = 3, y = -2 **c** x = 6, y = -1 **d** x = -2, y = 5
- **15a** x = 1, y = 3 $x = -\frac{9}{5}, y = -\frac{13}{5}$
- **15b** x = 2, y = 4x = 4, y = 2

14a x = 1, y = 4

- **15c** x = 1, y = -2x = 2, y = -1
- **15d** x = 4, y = 1 $x = \frac{16}{5}, y = \frac{13}{5}$
- **15e** x = 0, y = 5x = -5, y = 0
- **15f** $x = -\frac{8}{3}, y = -\frac{19}{3}$ x = 3, y = 5
- **15g** x = -2, y = -4x = 2, y = 4
- **15h** $x = \frac{5}{2}, y = 6$ x = 3, y = 5

16	a	<i>x</i> < -20	b	$x \leq 3.5$	c	<i>x</i> < 4	$\mathbf{d} x \leq -4$
	e	$-1 \le x < 5$	f	$x \le 1$	g	<i>x</i> ≤ −6	$\mathbf{h} \qquad t < \frac{5}{2}$
	i	$n \ge \frac{7}{5}$	j	<i>x</i> < –6	k	$x < \frac{3}{2}$	
17	a	m = 3, c = 5		b	$m = -\frac{1}{2}, c = -7$	с	$m=2, c=-\frac{3}{2}$
	d	m = -1, c = 5		e	$m = \frac{2}{3}, c = -\frac{7}{3}$ or	$-2\frac{1}{3}$ f	m = -5, c = 4

18

Gradient	y-intercept	Equation of the line
5	0	y = 5x
-3	2	y = -3x + 2
4	_7	y = 4x - 7

19 a
$$x + 2y + 14 = 0$$
 b $6x + 5y + 10 = 0$

- **20** y = 4x 3
- **21** $y = -\frac{2}{3}x + 7$
- **22 a** y = 2x 3 **b** y = -3x + 19
- **23 a** y = 3x 7 **b** $y = \frac{3}{2}x + 8$
- **24 a** $y = -\frac{1}{2}x + 2$ **b** $y = \frac{5}{2}x 8$
- **25 a** $y = -\frac{1}{2}x$ **b** y = 2x
- 26 a
 6.49 cm
 b
 6.93 cm
 c
 2.80 cm
 d
 6.07 cm

 27 a
 36.9°
 b
 38.7°
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 <thC</th>
 C
 <thC</th>
 <thC</tht
- **28** 5.71 cm
- **29** 20.4°

30	a	45°	b	1 cm	c	30°	d	$\sqrt{3}$ cm
31	a	6.46 cm	b	9.70 cm				
32	a	22.2°	b	93.6°				
33	a	13.7 cm	b	76.0°				
34	a	4.33 cm	b	6.39 cm				
35	a	42.8°	b	28.2°				
36	a	8.13 cm	b	32.3°				
37	18.1	l cm ²	38	5.10 cm				
39a	d =	$\frac{C}{\pi}$	b	$w = \frac{P - 2l}{2}$	c	$T = \frac{S}{D}$		
d	t =	$\frac{q-r}{p}$	e	$t = \frac{2u}{2a - 1}$	f	$x = \frac{V}{a+4}$		
g	<i>d</i> =	$=\frac{b-c}{x}$	h	$g = \frac{2h+9}{7-h}$	i	$e = \frac{1}{x+7}$	j	$x = \frac{4y - 3}{2 + y}$
40	a	$r = \sqrt{\frac{A}{\pi}}$	b	$r = \sqrt[3]{\frac{3V}{4\pi}}$				
	c	$r = \frac{P}{\pi + 2}$	d	$r = \sqrt{\frac{3V}{2\pi h}}$				
41	a	$x = \frac{abz}{cdy}$	b	$x = \frac{3dz}{4\pi cpy^2}$				
		bsin A						

- $42 \quad \sin B = \frac{b \sin A}{a}$
- 43 $\cos B = \frac{a^2 + c^2 b^2}{2ac}$