Applied Science Chemistry (AAQ) BTEC work to be submitted in the first lesson in September with Mr Boddaert

Hi all

This work needs to be completed and handed in the first lessons in September.

If you attended paper the taster lessons you would have received a paper copy.

Use the PDF attached on the school website to access the links for videos to watch before each section, to remind yourself of the topic before completing the each section of this booklet.

Many thanks in advance and I look forward to teaching you in September

boddaetd@wallingfordschool.com

		_		_			_						_			_											
	0 (8)	€ . 4.	nethum 2	20.2	ş	10	39.9	Argon	18	83.8	궃	krypton 36	131.3	×	xenon 24	[222]	R	88 88		peo							
	7		(17)	19.0	ш	fluorine 9	35.5	Chlorine	17	79.9	ъ	bromine 35	126.9	-	53 53	[210]	Ąţ	astatine 85		uodau uaa		175	3	71 71	[257]	Lr	103
	9		(16)	16.0	0	axygen 8	32.1	Sulfur	16	0.62	Se	selenium 34	127.6	ē	tellurium 52	[506]	8	polonium 84		116 have b ticated		173	ድ	ytterblum 70	[254]	Е	102
	ī,		(12)	14.0	z	nitrogen 7	31.0	Prosphorus	15	74.9	As	arsenic 33	121.8	S	antimony 51	209.0	ä	bismuth 83		tomic numbers 112-116 hav but not fully authenticated		169	إع	mniinu 69	[326]	Md	ē
	4		(14)	12.0	U	carbon 6	28.1	-	4	72.6	g	germantum 32	118.7	Š	£ 23	202.2	ብ	82		atomic nun but not fu		167	ដ	m 89	[253]	E	9
	3		(13)	10.8	В	boron 5	27.0	Al	13	2.69		gallihum 31	114.8	드	midium 49	204.4	F	thallium 81		Elements with atomic numbers 112-116 have been reported but not fully authenticated		165	운		[254]	ES einsteinium	\$
ents								,	(12)	65.4	Zu	zinc 30	112.4	ខ	cadmium 48	200.6	뚠	mercury 80		Elem		163	ò	oysprusium 66	[251]	5	88
Periodic Table of Elements								3	(11)	63.5	3	copper 29	107.9	Ag	silver 47	197.0	PΓ	pog 23	[272]	Rg nompenum				65	[245]	Ę	44
le of									(01)	58.7	ź	nickel 28	106.4	Б	palladium 46	195.1	¥	platinum 78	_	DS demstactism		157	8	98000mum	[247]	۽ ۾ ج	g
: Tabl								į	(6)	58.9	ပိ	cobalt 27	102.9	듄	modium 45	192.2	<u>-</u>	midium 77	[568]	Mt		152		63	[243]	_ ≝	£
riodic		1.0 x	-					ę	(8)	55.8	ē	iron 26	101.1	2	ruthenium 44	190.2	õ	76 76	[277]	Hasslum 108		2	ES	62	[242]	Putomium	8
The Pe								į	9	54.9	¥	manganese 25	[86]			186.2	æ	rhenium 75	_	Bh bohrlum		[147]	E.	61	[237]	Np Pu	33
È				mass	loc	umber		5	(9)	52.0	ъ	chromium manganese 24 25	6.56	Wo	molybdenum technetium 42 43	183.8	≥	tungsten 74	[566]	Sg seaborgum		¥	Ŗ.	60 61	238	Ε	92
			Key	relative atomic mass	atomic symbol	name atomic (proton) number		į	(2)	50.9	>	vanadium 23	92.9	£	niobium 41	180.9	Тa	tantalum 73	_	dubmium muring		141	L.	59 59	[231]	Pa	2
				relati	ato	atomic		3	(4)	47.9	ï	titanium 22	91.2	Zr	zirconium 40	178.5	Ŧ	hafnrum 72	[261]	Rf nutherlandum		140	ა {	58	232	thorium 3	8
									(3)	45.0	Š	scandium 21	6.88	>	yttrium 39	138.9	ra*	lanthanum 57	[227]	AC* actimium			ve.				
	7		(2)	9.0	Be	beryllium 4	24.3	Mg	12	40.1	g	calcium 20	97.6	Š	strontium 38	137.3	Ba	26 56	[526]	Ra radium	3		- Lanthanide series	* Actinide series			
	-		(1)	6.9	ב	m m	23.0	E	1	39.1	¥	potassium 19	85.5	8	rubidium 37	132.9	ర	caesium 55	[223]	Fr francium 87	5		Lanth	. Actini			

1

https://www.bbc.co.uk/bitesize/guides/z3 sg2nb/revision/3

ATOMIC STRUCTURE

Atomic number and mass number - Atomic structure - AQA - GCSE Chemistry (Single Science) Revision - AQA - BBC Bitesize

Atoms consist of a	central	contair	ning protons and .		Th	e nucleus i
com						
evels (also called				52		
		er en				
a de la companya de		40		33		
sub-atomic particle	relative mass	relative charge				
proton				111		
neutron				H—		
electron						
•			19			
Atomic number = num	ber of					
Mass number = numbe	ar of	+ number of				
wass number - number	3F OI	+ number or				
The number of protons,	neutrons and elec	trons in an atom car	be worked out using	the atomic num	nber and mas	ss number.
Number of protons =						
Number of neutrons =						
Number of electrons = .						
Atoms can be represent	ted as follows:					
mass number Sym		protons =	. neutrons = e	electrons =		
Atoms of the same ele	ment have the sa	me number of	In fact,	it is the number	er of	that
determines what type of	of atom it is (e.g.	all atoms with 6 pro	otons are carbon ato	oms). Atoms of	f different el	ements have
different numbers of						
			1		25	25
sotopes are atoms wit	h the same number	er of	but a different		35 17Cl	37 17Cl
number of	This mean	ns they are atoms	of the same	protons		
with	h the same	number b	out a different	neutrons		
number.				electrons		

Atom	Atomic number	Mass number	Number of protons	Number of neutrons	Number of electrons
²³ ₁₁ Na					
Li	3	7			
Ar		40	18		
K			19	20	
Al				14	13
²³⁵ ₉₂ U					
²³⁸ U					

Atoms are neutral because they contain the same number of positive protons as negative electrons. For example, the atom ²³₁₁Na is neutral because it contains 11 protons (11+ charges) and 11 electrons (11- charges).

lons are particles that contain a different number of protons and electrons. For example, an ion with 11 protons (11+ charges) and 10 electrons (10- charges) has an overall charge of 1+.

The noble gas elements (Group 0 elements) have very stable electron arrangements. Ions also have the electron structure of the noble gases (group 0 elements), except H* which has no electrons at all.

Complete the table below to show whether particles are atoms or ions, and for ions their charge.

Number and overall charge of protons	11+	11+	16+	4+	13+	18+	17+	15+	21+	1+	32+	35+
Number and overall charge of electrons	11-	10-	18–	2-	10-	18-	18-	18-	18-	0-	32-	36-
Atom or ion?	atom	ion	ion	92		- 8		:			8	
Overall charge	- 22	1+	2-	92		- 93		11	- 2		3:	

Complete the table below to show the electronic structure of some common ions. The first one has been done for you. You will need to use the Periodic Table to help.

Ion	CI ⁻	Li⁺	F ⁻	Mg ²⁺
Protons	17			
Electrons	18			
Electron structure				
Electron structure	2,8,8			

lon	K ⁺	S ²⁻	H ⁺	P ³⁻
Protons				
Electrons				
Electron structure				
Electron structure				

Ionic bonding

- 1. Watch each of these short videos on ionic bonding:
 - Formation of ions. https://youtu.be/900dXBWgx3Y
 - Ionic bonding https://youtu.be/zpaHPXVR8WU
 - Giant ionic compounds and their melting and boiling points
 https://youtu.be/PNKsbnH1vw8 properties of ionic compounds.
 https://youtu.be/TxHi5FtMYKk
- Make key notes on the following using KS4 Bitesize https://www.bbc.co.uk/bitesize/guides/z6k6pbk/revision/1

What an ionic bond is
Example of how a metal and non-metal bond ionically
Properties of ionic compounds, with an explanation of each.

3. Answer the following exam questions on ionic bonding and use the mark scheme attached to the online resources to mark them.

<u>გ</u>

This question is about calcium.

- lonic compounds, such as calcium oxide, have high melting points. **a**
- Complete the sentences. Use words from the box.

layers
ions
forces
spuoq

Calcium oxide has a giant ionic lattice in which there are strong electrostatic

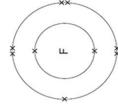
of attraction in all directions.

The figure below shows the electronic structure of an oxygen atom and a calcium atom. <u>ပ</u>

Calcium atom * Oxygen atom

Describe how the calcium atom and the oxygen atom forms calcium oxide.

You should give the charge on each ion formed.


(4) (Total 6 marks)

ö

This question is about fluorine.

Figure 1 shows the arrangement of electrons in a fluorine atom. (a)

Figure 1

In which group of the periodic table is fluorine?

3

£

Group_

Ξ

Complete the table below to show the particles in an atom and their relative masses. \equiv

Relative mass		1	Very small
Name of particle	Proton	Neutron	

(iii) Use the correct answer from the box to complete the sentence.

(7)

isotopes
alloys
alkalis

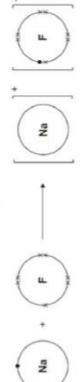
Atoms of fluorine with different numbers of neutrons are

called

- Sodium reacts with fluorine to produce sodium fluoride. **(Q**)
- Complete the word equation for this reaction. 3

sodium

Ξ


Ξ

3

Figure 2 shows what happens to the electrons in the outer shells when a sodium atom reacts with a fluorine atom.

The dots (*) and crosses (*) represent electrons.

Figure 2

Use Figure 2 to help you answer this question.

Describe, as fully as you can, what happens when sodium reacts with fluorine to produce sodium fluoride.

1		Ĺ	
-			
- 1			
1			
-			
- 1			
1			
-			
-			
-			
-			
-			
-			
- 1			

- 1		
	 	 ۰
		ı
		ı
		ı
		1
		ı
		в
		в
		в
		в
		ı
		ı
		ı
		ı
		ı
		ı
		ı
		в
		в
		ı
		в
		в
		ı
		ı
		ı
		ı
		ı
		ı
		ı
		ı
		ø
		ı
		ø
		ø
		ø
		ı
		ı
		ı
		ı
		ı
		ı
		ı
		ı
		ı
		ı
		ı
		ı
		ı
		ı
		ı
		ı
		ı
		в
		в
		ı
		ı
		ı
		ı
		ı
		в
		ı
		ı
		ı
		ı
		1
		ı
		ı
		ı
		ı
		а
		ı
		ı
		l
		l
		l
		l
		l

Sodium fluoride is an ionic substance.

3

What are two properties of ionic substances?

Tick (✓) two boxes.

Dissolve in water

Gas at room temperature

High melting point

Low boiling point

(Total 13 marks)

This question is about magnesium.

(a)

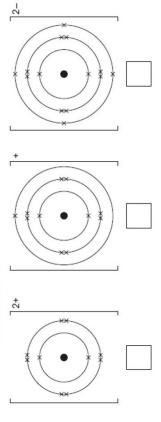
Use the correct answer from the box to complete each sentence. 4

shells	
protons	
neutrons	
electrons	

The nucleus contains protons and

The particles with the smallest relative mass that move around the nucleus are

called


Atoms of magnesium are neutral because they contain the same number of electrons and ල

A magnesium atom reacts to produce a magnesium ion. €

Which diagram shows a magnesium ion?

Tick (✓) one box.

€

Ξ

Covalent bonding

- 1. Watch each of these short videos on covalent bonding:
- Covalent bonding <u>Covalent bonding Structure and bonding: Video playlist BBC</u>
 Bitesize
- Properties of covalent compounds: https://youtu.be/h24UmH38 LI
- Covalent bonding of hydrogen, oxygen and nitrogen https://youtu.be/0HfN3CvXP2M
- Covalent bonding in methane, water and ammonia https://youtu.be/oy1CiebbTzU
- 2. Make key notes on the following using KS4 Bitesize. Open up the revision notes and click through the BBC Bitesize pages

<u>Covalent bonds - Small molecules - AQA -GCSE Chemistry (Single Science) Revision - AQA - BBC Bitesize</u> <u>Dot and cross models - Bonding - GCSE Chemistry (Single Science) Revision - WJEC - BBC Bitesize</u>

What a covalent bond is	
Properties of simple covalent compounds, including an exof these properties	planation

Drawing stick diagrams & dot-cross diagrams

Stick diagrams - these show each covalent bond as a stick.

Dot-cross diagrams - these show the outer shell electrons only

- Draw a stick diagram
- 2 Re-draw the stick diagram without the sticks
- 3 Replace the stick with a X which represents the two electrons in the bond (X represents electrons from one atom, and prepresents the electron from the other atom).
- 4 Add in any other outer shell electrons from each atom (electrons are always in pairs)
- 5 CHECK that there are 8 electrons around each atom (except H where there should be 2 electrons)

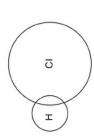
Stick diagram	Molecule	Dot-cross diagram
H-CL	HCl	H (X) Cl
	CO ₂	
	N ₂	
	H ₂ O	

Ê

Hydrogen sulfide has a low boiling point

€

Explain why.


This question is about hydrogen chloride.

A hydrogen atom contains 1 electron and a chlorine atom contains 17 electrons. (a)

Complete Figure 1 to show a dot and cross diagram for a hydrogen chloride

Show the outer electrons only.

Figure 1

Hydrogen gas (H₂) reacts with chlorine gas to produce hydrogen chloride.

Complete the balanced chemical equation for the reaction between hydrogen and (q)

1

8

8

Lead white is also used in paint. The white colour slowly darkens when lead sulfide is produced.

€

The painting can be restored with hydrogen peroxide. This converts the black lead sulfide into white lead sulfate.

Balance the equation for the reaction between lead sulfide and hydrogen peroxide (H₂O₂).

I

Z

I

I

H₂O₂(ag)

→ PbSO₄(s)

+ 4H₂O(I)

Ξ

ä

9

A problem with lead compounds is that they slowly react with hydrogen sulfide in the

air. This produces lead sulfide which is black.

9

Hydrogen sulfide has the formula H.S. The bonding in a molecule of hydrogen sulfide can be represented as:

H-S-H

Complete the diagram below to show the arrangement of the outer electrons of the hydrogen and sutting atoms in hydrogen sulfide. Use dots (•) and crosses (x) to represent the electrons.

You need only show the outer shell electrons.

(Atomic numbers: H = 1; S = 16.)

I

ഗ

I

2

8

2

Q

Complete the diagram to show the bonding in ammonia.

Hydrogen is used to make ammonia (NH₃).

(q)

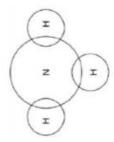
Use dots (•) and crosses (x) to show electrons.

Show only outer shell electrons.

g

Ξ

Write down everything that this diagram tells you about a methane molecule.

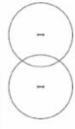

To gain full marks in this question you should write your ideas in good English. Put them into a sensible order and use the correct scientific words.

This question is about ammonia (NH₃).

E

(a) Complete the diagram to show the bonding electrons in ammonia.

Show the outer electrons only.

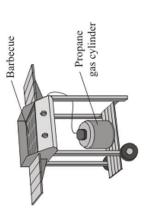


Q8. (d) The bonding in iodine is similar to the bonding in chlorine.

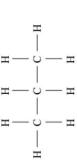
2

Complete the diagram below to show the bonding in lodine. 3

Show the outer electrons only.



Explain why iodine has a low melting point. Œ


8

<u>6</u>

This barbecue burns propane gas.

The structure of propane is shown below.

Complete the diagram to show how the outer energy level (shell) electrons of hydrogen and carbon are arranged in a molecule of propane. (a)